This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2215

2022 Vietnam National Olympiad, 1

Let $a$ be a non-negative real number and a sequence $(u_n)$ defined as: $u_1=6,u_{n+1} = \frac{2n+a}{n} + \sqrt{\frac{n+a}{n}u_n+4}, \forall n \ge 1$ a) With $a=0$, prove that there exist a finite limit of $(u_n)$ and find that limit b) With $a \ge 0$, prove that there exist a finite limit of $(u_n)$

2009 Today's Calculation Of Integral, 400

(1) A function is defined $ f(x) \equal{} \ln (x \plus{} \sqrt {1 \plus{} x^2})$ for $ x\geq 0$. Find $ f'(x)$. (2) Find the arc length of the part $ 0\leq \theta \leq \pi$ for the curve defined by the polar equation: $ r \equal{} \theta\ (\theta \geq 0)$. Remark: [color=blue]You may not directly use the integral formula of[/color] $ \frac {1}{\sqrt {1 \plus{} x^2}},\ \sqrt{1 \plus{} x^2}$ here.

2011 Today's Calculation Of Integral, 759

Given a regular tetrahedron $PQRS$ with side length $d$. Find the volume of the solid generated by a rotation around the line passing through $P$ and the midpoint $M$ of $QR$.

2009 Iran MO (2nd Round), 3

$11$ people are sitting around a circle table, orderly (means that the distance between two adjacent persons is equal to others) and $11$ cards with numbers $1$ to $11$ are given to them. Some may have no card and some may have more than $1$ card. In each round, one [and only one] can give one of his cards with number $ i $ to his adjacent person if after and before the round, the locations of the cards with numbers $ i-1,i,i+1 $ don’t make an acute-angled triangle. (Card with number $0$ means the card with number $11$ and card with number $12$ means the card with number $1$!) Suppose that the cards are given to the persons regularly clockwise. (Mean that the number of the cards in the clockwise direction is increasing.) Prove that the cards can’t be gathered at one person.

2008 VJIMC, Problem 3

Find all $c\in\mathbb R$ for which there exists an infinitely differentiable function $f:\mathbb R\to\mathbb R$ such that for all $n\in\mathbb N$ and $x\in\mathbb R$ we have $$f^{(n+1)}(x)>f^{(n)}(x)+c.$$

Today's calculation of integrals, 765

Define two functions $g(x),\ f(x)\ (x\geq 0)$ by $g(x)=\int_0^x e^{-t^2}dt,\ f(x)=\int_0^1 \frac{e^{-(1+s^2)x}}{1+s^2}ds.$ Now we know that $f'(x)=-\int_0^1 e^{-(1+s^2)x}ds.$ (1) Find $f(0).$ (2) Show that $f(x)\leq \frac{\pi}{4}e^{-x}\ (x\geq 0).$ (3) Let $h(x)=\{g(\sqrt{x})\}^2$. Show that $f'(x)=-h'(x).$ (4) Find $\lim_{x\rightarrow +\infty} g(x)$ Please solve the problem without using Double Integral or Jacobian for those Japanese High School Students who don't study them.

1980 Spain Mathematical Olympiad, 4

Find the function $f(x)$ that satisfies the equation $$f'(x) + x^2f(x) = 0$$ knowing that $f(1) = e$. Graph this function and calculate the tangent of the curve at the point of abscissa $1$.

2004 VJIMC, Problem 1

Suppose that $f:[0,1]\to\mathbb R$ is a continuously differentiable function such that $f(0)=f(1)=0$ and $f(a)=\sqrt3$ for some $a\in(0,1)$. Prove that there exist two tangents to the graph of $f$ that form an equilateral triangle with an appropriate segment of the $x$-axis.

2009 Today's Calculation Of Integral, 482

Let $ n$ be natural number. Find the limit value of ${ \lim_{n\to\infty} \frac{1}{n}(\frac{1}{\sqrt{2}}+\frac{2}{\sqrt{5}}}+\cdots\cdots +\frac{n}{\sqrt{n^2+1}}).$

2013 South East Mathematical Olympiad, 5

$f(x)=\sum\limits_{i=1}^{2013}\left[\dfrac{x}{i!}\right]$. A integer $n$ is called [i]good[/i] if $f(x)=n$ has real root. How many good numbers are in $\{1,3,5,\dotsc,2013\}$?

2008 IMO Shortlist, 2

[b](a)[/b] Prove that \[\frac {x^{2}}{\left(x \minus{} 1\right)^{2}} \plus{} \frac {y^{2}}{\left(y \minus{} 1\right)^{2}} \plus{} \frac {z^{2}}{\left(z \minus{} 1\right)^{2}} \geq 1\] for all real numbers $x$, $y$, $z$, each different from $1$, and satisfying $xyz=1$. [b](b)[/b] Prove that equality holds above for infinitely many triples of rational numbers $x$, $y$, $z$, each different from $1$, and satisfying $xyz=1$. [i]Author: Walther Janous, Austria[/i]

2014 BMT Spring, 9

Find $\alpha$ such that $$\lim_{x\to0^+}x^\alpha I(x)=a\enspace\text{given}\enspace I(x)=\int^\infty_0\sqrt{1+t}\cdot e^{-xt}dt$$ where $a$ is a nonzero real number.

2010 Today's Calculation Of Integral, 581

For real numer $ c$ for which $ cx^2\geq \ln (1\plus{}x^2)$ for all real numbers $ x$, find the value of $ c$ such that the area of the figure bounded by two curves $ y\equal{}cx^2$ and $ y\equal{}\ln (1\plus{}x^2)$ and two lines $ x\equal{}1,\ x\equal{}\minus{}1$ is 4.

2010 Tuymaada Olympiad, 1

We have a set $M$ of real numbers with $|M|>1$ such that for any $x\in M$ we have either $3x-2\in M$ or $-4x+5\in M$. Show that $M$ is infinite.

2012 Today's Calculation Of Integral, 775

Let $a$ be negative constant. Find the value of $a$ and $f(x)$ such that $\int_{\frac{a}{2}}^{\frac{t}{2}} f(x)dx=t^2+3t-4$ holds for any real numbers $t$.

Today's calculation of integrals, 899

Find the limit as below. \[\lim_{n\to\infty} \frac{(1^2+2^2+\cdots +n^2)(1^3+2^3+\cdots +n^3)(1^4+2^4+\cdots +n^4)}{(1^5+2^5+\cdots +n^5)^2}\]

2010 Today's Calculation Of Integral, 539

Evaluate $ \int_0^{\frac{\pi}{4}} \frac{\sin ^ 2 x}{\cos ^ 3 x}\ dx$.

2001 China Team Selection Test, 3

Let $F = \max_{1 \leq x \leq 3} |x^3 - ax^2 - bx - c|$. When $a$, $b$, $c$ run over all the real numbers, find the smallest possible value of $F$.

1972 IMO Longlists, 40

Prove the inequalities \[\frac{u}{v}\le \frac{\sin u}{\sin v}\le \frac{\pi}{2}\times\frac{u}{v},\text{ for }0 \le u < v \le \frac{\pi}{2}\]

2011 Harvard-MIT Mathematics Tournament, 3

Evaluate $\displaystyle \int_1^\infty \left(\frac{\ln x}{x}\right)^{2011} dx$.

2009 Today's Calculation Of Integral, 412

Let the definite integral $ I_n\equal{}\int_0^{\frac{\pi}{4}} \frac{dx}{(\cos x)^n}\ (n\equal{}0,\ \pm 1,\ \pm 2,\ \cdots )$. (1) Find $ I_0,\ I_{\minus{}1},\ I_2$. (2) Find $ I_1$. (3) Express $ I_{n\plus{}2}$ in terms of $ I_n$. (4) Find $ I_{\minus{}3},\ I_{\minus{}2},\ I_3$. (5) Evaluate the definite integrals $ \int_0^1 \sqrt{x^2\plus{}1}\ dx,\ \int_0^1 \frac{dx}{(x^2\plus{}1)^2}\ dx$ in using the avobe results. You are not allowed to use the formula of integral for $ \sqrt{x^2\plus{}1}$ directively here.

2012 Today's Calculation Of Integral, 793

Find the area of the figure bounded by two curves $y=x^4,\ y=x^2+2$.

2005 Today's Calculation Of Integral, 4

Calculate the following indefinite integrals. [1] $\int \frac{x}{\sqrt{5-x}}dx$ [2] $\int \frac{\sin x \cos ^2 x}{1+\cos x}dx$ [3] $\int (\sin x+\cos x)^2dx$ [4] $\int \frac{x-\cos ^2 x}{x\cos^ 2 x}dx$ [5]$\int (\sin x+\sin 2x)^2 dx$

2006 Moldova National Olympiad, 10.5

Let $x_{1}$, $x_{2}$, $\ldots$, $x_{n}$ be $n$ real numbers in $\left(\frac{1}{4},\frac{2}{3}\right)$. Find the minimal value of the expression: \[ \log_{\frac 32x_{1}}\left(\frac{1}{2}-\frac{1}{36x_{2}^{2}}\right)+\log_{\frac 32x_{2}}\left(\frac{1}{2}-\frac{1}{36x_{3}^{2}}\right)+\cdots+ \log_{\frac 32x_{n}}\left(\frac{1}{2}-\frac{1}{36x_{1}^{2}}\right). \]