This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2215

2012 Today's Calculation Of Integral, 818

For a function $f(x)=x^3-x^2+x$, find the limit $\lim_{n\to\infty} \int_{n}^{2n}\frac{1}{f^{-1}(x)^3+|f^{-1}(x)|}\ dx.$

2013 Today's Calculation Of Integral, 876

Suppose a function $f(x)$ is continuous on $[-1,\ 1]$ and satisfies the condition : 1) $f(-1)\geq f(1).$ 2) $x+f(x)$ is non decreasing function. 3) $\int_{-1}^ 1 f(x)\ dx=0.$ Show that $\int_{-1}^1 f(x)^2dx\leq \frac 23.$

2018 Romania National Olympiad, 2

Let $x>0.$ Prove that $$2^{-x}+2^{-1/x} \leq 1.$$

1992 IMO Longlists, 78

Let $F_n$ be the nth Fibonacci number, defined by $F_1 = F_2 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for $n > 2$. Let $A_0, A_1, A_2,\cdots$ be a sequence of points on a circle of radius $1$ such that the minor arc from $A_{k-1}$ to $A_k$ runs clockwise and such that \[\mu(A_{k-1}A_k)=\frac{4F_{2k+1}}{F_{2k+1}^2+1}\] for $k \geq 1$, where $\mu(XY )$ denotes the radian measure of the arc $XY$ in the clockwise direction. What is the limit of the radian measure of arc $A_0A_n$ as $n$ approaches infinity?

1985 IMO, 6

For every real number $x_1$, construct the sequence $x_1,x_2,\ldots$ by setting: \[ x_{n+1}=x_n(x_n+{1\over n}). \] Prove that there exists exactly one value of $x_1$ which gives $0<x_n<x_{n+1}<1$ for all $n$.

2015 Mathematical Talent Reward Programme, MCQ: P 13

Define $f(x)=\max \{\sin x, \cos x\} .$ Find at how many points in $(-2 \pi, 2 \pi), f(x)$ is not differentiable? [list=1] [*] 0 [*] 2 [*] 4 [*] $\infty$ [/list]

PEN E Problems, 27

Prove that for each positive integer $n$, there exist $n$ consecutive positive integers none of which is an integral power of a prime number.

2020 Jozsef Wildt International Math Competition, W60

Compute $$\int\frac{(\sin x+\cos x)(4-2\sin2x-\sin^22x)e^x}{\sin^32x}dx$$ where $x\in\left(0,\frac\pi2\right)$. [i]Proposed by Mihály Bencze[/i]

1975 Canada National Olympiad, 4

For a positive number such as 3.27, 3 is referred to as the integral part of the number and .27 as the decimal part. Find a positive number such that its decimal part, its integral part, and the number itself form a geometric progression.

2012 Today's Calculation Of Integral, 801

Answer the following questions: (1) Let $f(x)$ be a function such that $f''(x)$ is continuous and $f'(a)=f'(b)=0$ for some $a<b$. Prove that $f(b)-f(a)=\int_a^b \left(\frac{a+b}{2}-x\right)f''(x)dx$. (2) Consider the running a car on straight road. After a car which is at standstill at a traffic light started at time 0, it stopped again at the next traffic light apart a distance $L$ at time $T$. During the period, prove that there is an instant for which the absolute value of the acceleration of the car is more than or equal to $\frac{4L}{T^2}.$

2006 Petru Moroșan-Trident, 2

Let be two real numbers $ a>0,b. $ Calculate the primitive of the function $ 0<x\mapsto\frac{bx-1}{e^{bx}+ax} . $ [i]Dan Negulescu[/i]

2007 Today's Calculation Of Integral, 208

Find the values of real numbers $a,\ b$ for which the function $f(x)=a|\cos x|+b|\sin x|$ has local minimum at $x=-\frac{\pi}{3}$ and satisfies $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\{f(x)\}^{2}dx=2$.

2004 Iran MO (3rd Round), 9

Let $ABC$ be a triangle, and $O$ the center of its circumcircle. Let a line through the point $O$ intersect the lines $AB$ and $AC$ at the points $M$ and $N$, respectively. Denote by $S$ and $R$ the midpoints of the segments $BN$ and $CM$, respectively. Prove that $\measuredangle ROS=\measuredangle BAC$.

2011 Today's Calculation Of Integral, 733

Find $\lim_{n\to\infty} \int_0^1 x^2e^{-\left(\frac{x}{n}\right)^2}dx.$

2012 Graduate School Of Mathematical Sciences, The Master Course, Kyoto University, 2

For real numbers $b>a>0$, let $f : [0,\ \infty)\rightarrow \mathbb{R}$ be a continuous function. Prove that : (i) $\lim_{\epsilon\rightarrow +0} \int_{a\epsilon}^{b\epsilon} \frac{f(x)}{x}dx=f(0)\ln \frac{b}{a}.$ (ii) If $\int_1^{\infty} \frac{f(x)}{x}dx$ converges, then $\int_0^{\infty} \frac{f(bx)-f(ax)}{x}dx=f(0)\ln \frac{a}{b}.$

2014 BMT Spring, 9

Tags: calculus
Two different functions $f, g$ of $x$ are selected from the set of real-valued functions $$\left \{sin x, e^{-x}, x \ln x, \arctan x, \sqrt{x^2 + x} -\sqrt{x^2 + x} -x, \frac{1}{x} \right \}$$ to create a product function $f(x)g(x)$. For how many such products is $\lim_{x\to infty} f(x)g(x)$ finite?

2006 ISI B.Math Entrance Exam, 4

Let $f:\mathbb{R} \to \mathbb{R}$ be a function that is a function that is differentiable $n+1$ times for some positive integer $n$ . The $i^{th}$ derivative of $f$ is denoted by $f^{(i)}$ . Suppose- $f(1)=f(0)=f^{(1)}(0)=...=f^{(n)}(0)=0$. Prove that $f^{(n+1)}(x)=0$ for some $x \in (0,1)$

2007 China Team Selection Test, 3

Consider a $ 7\times 7$ numbers table $ a_{ij} \equal{} (i^2 \plus{} j)(i \plus{} j^2), 1\le i,j\le 7.$ When we add arbitrarily each term of an arithmetical progression consisting of $ 7$ integers to corresponding to term of certain row (or column) in turn, call it an operation. Determine whether such that each row of numbers table is an arithmetical progression, after a finite number of operations.

2017 Mathematical Talent Reward Programme, MCQ: P 2

Tags: limit , calculus
$\lim \limits_{x\to \infty} \left(\frac{\sin x}{x}\right)^{\frac{1}{x^2}}=$ [list=1] [*] $\sqrt{e}$ [*] $\infty$ [*] Does not exists [*] None of these [/list]

2006 Taiwan National Olympiad, 3

If positive integers $p,q,r$ are such that the quadratic equation $px^2-qx+r=0$ has two distinct real roots in the open interval $(0,1)$, find the minimum value of $p$.

2009 Kazakhstan National Olympiad, 6

Is there exist four points on plane, such that distance between any two of them is integer odd number? May be it is geometry or number theory or combinatoric, I don't know, so it here :blush:

2009 Today's Calculation Of Integral, 481

For real numbers $ a,\ b$ such that $ |a|\neq |b|$, let $ I_n \equal{} \int \frac {1}{(a \plus{} b\cos \theta)^n}\ (n\geq 2)$. Prove that : $ \boxed{\boxed{I_n \equal{} \frac {a}{a^2 \minus{} b^2}\cdot \frac {2n \minus{} 3}{n \minus{} 1}I_{n \minus{} 1} \minus{} \frac {1}{a^2 \minus{} b^2}\cdot\frac {n \minus{} 2}{n \minus{} 1}I_{n \minus{} 2} \minus{} \frac {b}{a^2 \minus{} b^2}\cdot\frac {1}{n \minus{} 1}\cdot \frac {\sin \theta}{(a \plus{} b\cos \theta)^{n \minus{} 1}}}}$

2016 Israel Team Selection Test, 1

Let $a,b,c$ be positive numbers satisfying $ab+bc+ca+2abc=1$. Prove that $4a+b+c \geq 2$.

2022 Romania National Olympiad, P1

Let $\mathcal{F}$ be the set of functions $f:\mathbb{R}\to\mathbb{R}$ such that $f(2x)=f(x)$ for all $x\in\mathbb{R}.$ [list=a] [*]Determine all functions $f\in\mathcal{F}$ which admit antiderivatives on $\mathbb{R}.$ [*]Give an example of a non-constant function $f\in\mathcal{F}$ which is integrable on any interval $[a,b]\subset\mathbb{R}$ and satisfies \[\int_a^bf(x) \ dx=0\]for all real numbers $a$ and $b.$ [/list][i]Mihai Piticari and Sorin Rădulescu[/i]