Found problems: 2215
2001 VJIMC, Problem 2
Let $f:[0,1]\to\mathbb R$ be a continuous function. Define a sequence of functions $f_n:[0,1]\to\mathbb R$ in the following way:
$$f_0(x)=f(x),\qquad f_{n+1}(x)=\int^x_0f_n(t)\text dt,\qquad n=0,1,2,\ldots.$$Prove that if $f_n(1)=0$ for all $n$, then $f(x)\equiv0$.
Today's calculation of integrals, 885
Find the infinite integrals as follows.
(1) 2013 Hiroshima City University entrance exam/Informatic Science
$\int \frac{x^2}{2-x^2}dx$
(2) 2013 Kanseigakuin University entrance exam/Science and Technology
$\int x^4\ln x\ dx$
(3) 2013 Shinsyu University entrance exam/Textile Science and Technology, Second-exam
$\int \frac{\cos ^ 3 x}{\sin ^ 2 x}\ dx$
2014 Contests, 4
Written on a blackboard is the polynomial $x^2+x+2014$. Calvin and Hobbes take turns alternately (starting with Calvin) in the following game. At his turn, Calvin should either increase or decrease the coefficient of $x$ by $1$. And at this turn, Hobbes should either increase or decrease the constant coefficient by $1$. Calvin wins if at any point of time the polynomial on the blackboard at that instant has integer roots. Prove that Calvin has a winning stratergy.
2013 AMC 12/AHSME, 13
Let points $ A = (0,0) , \ B = (1,2), \ C = (3,3), $ and $ D = (4,0) $. Quadrilateral $ ABCD $ is cut into equal area pieces by a line passing through $ A $. This line intersects $ \overline{CD} $ at point $ \left (\frac{p}{q}, \frac{r}{s} \right ) $, where these fractions are in lowest terms. What is $ p + q + r + s $?
$ \textbf{(A)} \ 54 \qquad \textbf{(B)} \ 58 \qquad \textbf{(C)} \ 62 \qquad \textbf{(D)} \ 70 \qquad \textbf{(E)} \ 75 $
2010 Today's Calculation Of Integral, 590
Evaluate $ \int_0^{\frac{\pi}{8}} \frac{(\cos \theta \plus{}\sin \theta)^{\frac{3}{2}}\minus{}(\cos \theta \minus{}\sin \theta)^{\frac{3}{2}}}{\sqrt{\cos 2\theta}}\ d\theta$.
2004 District Olympiad, 4
Let $ a,b\in (0,1) $ and a continuous function $ f:[0,1]\longrightarrow\mathbb{R} $ with the property that
$$ \int_0^x f(t)dt=\int_0^{ax} f(t)dt +\int_0^{bx} f(t)dt,\quad\forall x\in [0,1] . $$
[b]a)[/b] Show that if $ a+b<1, $ then $ f=0. $
[b]b)[/b] Show that if $ a+b=1, $ then $ f $ is constant.
2005 Harvard-MIT Mathematics Tournament, 4
Let $ f : \mathbf {R} \to \mathbf {R} $ be a smooth function such that $ f'(x)^2 = f(x) f''(x) $ for all $x$. Suppose $f(0)=1$ and $f^{(4)} (0) = 9$. Find all possible values of $f'(0)$.
1991 USAMO, 2
For any nonempty set $\,S\,$ of numbers, let $\,\sigma(S)\,$ and $\,\pi(S)\,$ denote the sum and product, respectively, of the elements of $\,S\,$. Prove that
\[ \sum \frac{\sigma(S)}{\pi(S)} = (n^2 + 2n) - \left(1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} \right) (n+1), \]
where ``$\Sigma$'' denotes a sum involving all nonempty subsets $S$ of $\{1,2,3, \ldots,n\}$.
2013 Romania National Olympiad, 4
a)Prove that $\frac{1}{2}+\frac{1}{3}+...+\frac{1}{{{2}^{m}}}<m$, for any $m\in {{\mathbb{N}}^{*}}$.
b)Let ${{p}_{1}},{{p}_{2}},...,{{p}_{n}}$ be the prime numbers less than ${{2}^{100}}$. Prove that
$\frac{1}{{{p}_{1}}}+\frac{1}{{{p}_{2}}}+...+\frac{1}{{{p}_{n}}}<10$
2013 Stanford Mathematics Tournament, 8
The function $f(x)$ is defined for all $x\ge 0$ and is always nonnegative. It has the additional property that if any line is drawn from the origin with any positive slope $m$, it intersects the graph $y=f(x)$ at precisely one point, which is $\frac{1}{\sqrt{m}}$ units from the origin. Let $a$ be the unique real number for which $f$ takes on its maximum value at $x=a$ (you may assume that such an $a$ exists). Find $\int_{0}^{a}f(x) \, dx$.
2013 Today's Calculation Of Integral, 869
Let $I_n=\frac{1}{n+1}\int_0^{\pi} x(\sin nx+n\pi\cos nx)dx\ \ (n=1,\ 2,\ \cdots).$
Answer the questions below.
(1) Find $I_n.$
(2) Find $\sum_{n=1}^{\infty} I_n.$
2018 Romania National Olympiad, 2
Let $\mathcal{F}$ be the set of continuous functions $f: \mathbb{R} \to \mathbb{R}$ such that $$e^{f(x)}+f(x) \geq x+1, \: \forall x \in \mathbb{R}$$
For $f \in \mathcal{F},$ let $$I(f)=\int_0^ef(x) dx$$
Determine $\min_{f \in \mathcal{F}}I(f).$
[i]Liviu Vlaicu[/i]
2000 Moldova Team Selection Test, 3
For each positive integer $ n$, evaluate the sum
\[ \sum_{k\equal{}0}^{2n}(\minus{}1)^{k}\frac{\binom{4n}{2k}}{\binom{2n}{k}}\]
2007 Today's Calculation Of Integral, 194
Evaluate
\[\sum_{n=0}^{2006}\int_{0}^{1}\frac{dx}{2(x+n+1)\sqrt{(x+n)(x+n+1)}}\]
2007 Gheorghe Vranceanu, 3
$ \lim_{n\to\infty } \sqrt[n]{\sum_{i=0}^n\binom{n}{i}^2} $
2007 Kazakhstan National Olympiad, 1
Zeros of a fourth-degree polynomial $f (x)$ form an arithmetic progression. Prove that the zeros of $f '(x)$ also form an arithmetic progression.
2011 Tokio University Entry Examination, 3
Let $L$ be a positive constant. For a point $P(t,\ 0)$ on the positive part of the $x$ axis on the coordinate plane, denote $Q(u(t),\ v(t))$ the point at which the point reach starting from $P$ proceeds by distance $L$ in counter-clockwise on the perimeter of a circle passing the point $P$ with center $O$.
(1) Find $u(t),\ v(t)$.
(2) For real number $a$ with $0<a<1$, find $f(a)=\int_a^1 \sqrt{\{u'(t)\}^2+\{v'(t)\}^2}\ dt$.
(3) Find $\lim_{a\rightarrow +0} \frac{f(a)}{\ln a}$.
[i]2011 Tokyo University entrance exam/Science, Problem 3[/i]
2003 CentroAmerican, 3
Let $a$ and $b$ be positive integers with $a>1$ and $b>2$. Prove that $a^b+1\ge b(a+1)$ and determine when there is inequality.
1984 Putnam, B2
Find the minimum value of\[ (u-v)^2+\left(\sqrt{2-u^2}-\frac{9}{v}\right)^2 \]for $0<u<\sqrt{2}$ and $v>0$
2012 Today's Calculation Of Integral, 851
Let $T$ be a period of a function $f(x)=|\cos x|\sin x\ (-\infty,\ \infty).$
Find $\lim_{n\to\infty} \int_0^{nT} e^{-x}f(x)\ dx.$
2007 F = Ma, 2
The graph shows velocity as a function of time for a car. What was the acceleration at time = $90$ seconds?
[asy]
size(275);
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps);
draw((0,0)--(6,0));
draw((0,1)--(6,1));
draw((0,2)--(6,2));
draw((0,3)--(6,3));
draw((0,4)--(6,4));
draw((0,0)--(0,4));
draw((1,0)--(1,4));
draw((2,0)--(2,4));
draw((3,0)--(3,4));
draw((4,0)--(4,4));
draw((5,0)--(5,4));
draw((6,0)--(6,4));
label("$0$",(0,0),S);
label("$30$",(1,0),S);
label("$60$",(2,0),S);
label("$90$",(3,0),S);
label("$120$",(4,0),S);
label("$150$",(5,0),S);
label("$180$",(6,0),S);
label("$0$",(0,0),W);
label("$10$",(0,1),W);
label("$20$",(0,2),W);
label("$30$",(0,3),W);
label("$40$",(0,4),W);
draw((0,0.6)--(0.1,0.55)--(0.8,0.55)--(1.2,0.65)--(1.9,1)--(2.2,1.2)--(3,2)--(4,3)--(4.45,3.4)--(4.5,3.5)--(4.75,3.7)--(5,3.7)--(5.5,3.45)--(6,3));
label("Time (s)", (7.5,0),S);
label("Velocity (m/s)",(-1,3),W);
[/asy]
$ \textbf{(A)}\ 0.2\text{ m/s}^2\qquad\textbf{(B)}\ 0.33\text{ m/s}^2\qquad\textbf{(C)}\ 1.0\text{ m/s}^2\qquad\textbf{(D)}\ 9.8\text{ m/s}^2\qquad\textbf{(E)}\ 30\text{ m/s}^2 $
1988 IMO Longlists, 28
Find a necessary and sufficient condition on the natural number $ n$ for the equation
\[ x^n \plus{} (2 \plus{} x)^n \plus{} (2 \minus{} x)^n \equal{} 0
\]
to have a integral root.
2015 AMC 12/AHSME, 23
Let $S$ be a square of side length $1$. Two points are chosen independently at random on the sides of $S$. The probability that the straight-line distance between the points is at least $\tfrac12$ is $\tfrac{a-b\pi}c$, where $a$, $b$, and $c$ are positive integers and $\gcd(a,b,c)=1$. What is $a+b+c$?
$\textbf{(A) }59\qquad\textbf{(B) }60\qquad\textbf{(C) }61\qquad\textbf{(D) }62\qquad\textbf{(E) }63$
2010 Today's Calculation Of Integral, 623
Find the continuous function satisfying the following equation.
\[\int_0^x f(t)dt+\int_0^x tf(x-t)dt=e^{-x}-1.\]
[i]1978 Shibaura Institute of Technology entrance exam[/i]
2007 AIME Problems, 12
The increasing geometric sequence $x_{0},x_{1},x_{2},\ldots$ consists entirely of integral powers of $3.$ Given that \[\sum_{n=0}^{7}\log_{3}(x_{n}) = 308\qquad\text{and}\qquad 56 \leq \log_{3}\left ( \sum_{n=0}^{7}x_{n}\right ) \leq 57,\] find $\log_{3}(x_{14}).$