This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2215

Today's calculation of integrals, 893

Find the minimum value of $f(x)=\int_0^{\frac{\pi}{4}} |\tan t-x|dt.$

2019 Jozsef Wildt International Math Competition, W. 53

Compute $$\lim \limits_{n \to \infty}\frac{1}{n}\sum \limits_{k=1}^n\frac{\sqrt[n+k+1]{n+1}-\sqrt[n+k]{n}}{\sqrt[n+k]{n+1}-\sqrt[n+k]{n}}$$

2005 Today's Calculation Of Integral, 76

The function $f_n (x)\ (n=1,2,\cdots)$ is defined as follows. \[f_1 (x)=x,\ f_{n+1}(x)=2x^{n+1}-x^n+\frac{1}{2}\int_0^1 f_n(t)\ dt\ \ (n=1,2,\cdots)\] Evaluate \[\lim_{n\to\infty} f_n \left(1+\frac{1}{2n}\right)\]

1998 USAMTS Problems, 5

The figure on the right shows the ellipse $\frac{(x-19)^2}{19}+\frac{(x-98)^2}{98}=1998$. Let $R_1,R_2,R_3,$ and $R_4$ denote those areas within the ellipse that are in the first, second, third, and fourth quadrants, respectively. Determine the value of $R_1-R_2+R_3-R_4$. [asy] defaultpen(linewidth(0.7)); pair c=(19,98); real dist = 30; real a = sqrt(1998*19),b=sqrt(1998*98); xaxis("x",c.x-a-dist,c.x+a+3*dist,EndArrow); yaxis("y",c.y-b-dist*2,c.y+b+3*dist,EndArrow); draw(ellipse(c,a,b)); label("$R_1$",(100,200)); label("$R_2$",(-80,200)); label("$R_3$",(-60,-150)); label("$R_4$",(70,-150));[/asy]

1983 Miklós Schweitzer, 7

Prove that if the function $ f : \mathbb{R}^2 \rightarrow [0,1]$ is continuous and its average on every circle of radius $ 1$ equals the function value at the center of the circle, then $ f$ is constant. [i]V. Totik[/i]

2011 AMC 10, 24

A lattice point in an $xy$-coordinate system is any point $(x,y)$ where both $x$ and $y$ are integers. The graph of $y=mx+2$ passes through no lattice point with $0<x \le 100$ for all $m$ such that $\frac{1}{2}<m<a$. What is the maximum possible value of $a$? $ \textbf{(A)}\ \frac{51}{101} \qquad \textbf{(B)}\ \frac{50}{99} \qquad \textbf{(C)}\ \frac{51}{100} \qquad \textbf{(D)}\ \frac{52}{101} \qquad \textbf{(E)}\ \frac{13}{25} $

2021 CMIMC Integration Bee, 6

$$\int_0^{20\pi}|x\sin(x)|\,dx$$ [i]Proposed by Connor Gordon[/i]

2010 Today's Calculation Of Integral, 582

Prove the following inequality. \[ \frac{\pi}{4}\sqrt{\frac{3}{2}\plus{}\sqrt{2}}<\int_0^{\frac{\pi}{2}} \sqrt{1\minus{}\frac 12\sin ^ 2 x}\ dx<\frac{\sqrt{3}}{4}\pi\]

2004 Federal Competition For Advanced Students, Part 1, 4

Each of the $2N = 2004$ real numbers $x_1, x_2, \ldots , x_{2004}$ equals either $\sqrt 2 -1 $ or $\sqrt 2 +1$. Can the sum $\sum_{k=1}^N x_{2k-1}x_2k$ take the value $2004$? Which integral values can this sum take?

2012 Today's Calculation Of Integral, 806

Let $n$ be positive integers and $t$ be a positive real number. Evaluate $\int_0^{\frac{2n}{t}\pi} |x\sin\ tx|\ dx.$

2003 Romania Team Selection Test, 5

Let $f\in\mathbb{Z}[X]$ be an irreducible polynomial over the ring of integer polynomials, such that $|f(0)|$ is not a perfect square. Prove that if the leading coefficient of $f$ is 1 (the coefficient of the term having the highest degree in $f$) then $f(X^2)$ is also irreducible in the ring of integer polynomials. [i]Mihai Piticari[/i]

2003 AMC 12-AHSME, 25

Let $ f(x)\equal{}\sqrt{ax^2\plus{}bx}$. For how many real values of $ a$ is there at least one positive value of $ b$ for which the domain of $ f$ and the range of $ f$ are the same set? $ \textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 3 \qquad \textbf{(E)}\ \text{infinitely many}$

2012 Today's Calculation Of Integral, 795

Evaluate $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{2+\sin x}{1+\cos x}\ dx.$

2015 AMC 10, 21

Tetrahedron $ABCD$ has $AB=5$, $AC=3$, $BC=4$, $BD=4$, $AD=3$, and $CD=\tfrac{12}5\sqrt2$. What is the volume of the tetrahedron? $\textbf{(A) }3\sqrt2\qquad\textbf{(B) }2\sqrt5\qquad\textbf{(C) }\dfrac{24}5\qquad\textbf{(D) }3\sqrt3\qquad\textbf{(E) }\dfrac{24}5\sqrt2$

2012 Waseda University Entrance Examination, 4

For a function $f(x)=\ln (1+\sqrt{1-x^2})-\sqrt{1-x^2}-\ln x\ (0<x<1)$, answer the following questions: (1) Find $f'(x)$. (2) Sketch the graph of $y=f(x)$. (3) Let $P$ be a mobile point on the curve $y=f(x)$ and $Q$ be a point which is on the tangent at $P$ on the curve $y=f(x)$ and such that $PQ=1$. Note that the $x$-coordinate of $Q$ is les than that of $P$. Find the locus of $Q$.

2012 Graduate School Of Mathematical Sciences, The Master Course, Kyoto University, 5

Let $a,\ b>0$ be real numbers, $n\geq 2$ be integers. Evaluate $I_n=\int_{-\infty}^{\infty} \frac{exp(ia(x-ib))}{(x-ib)^n}dx.$

2007 Princeton University Math Competition, 8

For how many rational numbers $p$ is the area of the triangle formed by the intercepts and vertex of $f(x) = -x^2+4px-p+1$ an integer?

2009 Today's Calculation Of Integral, 437

Evaluate $ \int_0^1 \frac{1}{\sqrt{x}\sqrt{1\plus{}\sqrt{x}}\sqrt{1\plus{}\sqrt{1\plus{}\sqrt{x}}}}\ dx.$

Today's calculation of integrals, 856

On the coordinate plane, find the area of the part enclosed by the curve $C: (a+x)y^2=(a-x)x^2\ (x\geq 0)$ for $a>0$.

2021 CMIMC Integration Bee, 13

$$\int_0^1 x\ln(x^2)\ln(1+x)\,dx$$ [i]Proposed by Connor Gordon[/i]

2010 Today's Calculation Of Integral, 560

Let $ K$ be the figure bounded by the graph of function $ y \equal{} \frac {x}{\sqrt {1 \minus{} x^2}}$, $ x$ axis and the line $ x \equal{} \frac {1}{2}$. (1) Find the volume $ V_1$ of the solid generated by rotation of $ K$ around $ x$ axis. (2) Find the volume $ V_2$ of the solid generated by rotation of $ K$ around $ y$ axis. Please solve question (2) without using the shell method for Japanese High School Students those who don't learn it.

1989 IMO Longlists, 27

Let $ L$ denote the set of all lattice points of the plane (points with integral coordinates). Show that for any three points $ A,B,C$ of $ L$ there is a fourth point $ D,$ different from $ A,B,C,$ such that the interiors of the segments $ AD,BD,CD$ contain no points of $ L.$ Is the statement true if one considers four points of $ L$ instead of three?

2018 VTRMC, 1

Tags: calculus
It is known that $\int_1^2x^{-1}\arctan (1+x)\ dx = q\pi\ln(2)$ for some rational number $q.$ Determine $q.$ Here, $0\leq\arctan(x)<\frac{\pi}{2}$ for $0\leq x <\infty.$

2010 Today's Calculation Of Integral, 558

For a positive constant $ t$, let $ \alpha ,\ \beta$ be the roots of the quadratic equation $ x^2 \plus{} t^2x \minus{} 2t \equal{} 0$. Find the minimum value of $ \int_{ \minus{} 1}^2 \left\{\left(x \plus{} \frac {1}{\alpha ^ 2}\right)\left(x \plus{} \frac {1}{\beta ^ 2}\right) \plus{} \frac {1}{\alpha \beta}\right\}dx.$