This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 821

2013 Sharygin Geometry Olympiad, 2

Two circles $\omega_1$ and $\omega_2$ with centers $O_1$ and $O_2$ meet at points $A$ and $B$. Points $C$ and $D$ on $\omega_1$ and $\omega_2$, respectively, lie on the opposite sides of the line $AB$ and are equidistant from this line. Prove that $C$ and $D$ are equidistant from the midpoint of $O_1O_2$.

2020 German National Olympiad, 1

Let $k$ be a circle with center $M$ and let $B$ be another point in the interior of $k$. Determine those points $V$ on $k$ for which $\measuredangle BVM$ becomes maximal.

2006 Hanoi Open Mathematics Competitions, 6

Tags: circles , geometry
On the circle of radius $30$ cm are given $2$ points A,B with $AB = 16$ cm and $C$ is a midpoint of $AB$. What is the perpendicular distance from $C$ to the circle?

1992 All Soviet Union Mathematical Olympiad, 563

$A$ and $B$ lie on a circle. $P$ lies on the minor arc $AB$. $Q$ and $R$ (distinct from $P$) also lie on the circle, so that $P$ and $Q$ are equidistant from $A$, and $P$ and $R$ are equidistant from $B$. Show that the intersection of $AR$ and $BQ$ is the reflection of $P$ in $AB$.

2019 Tournament Of Towns, 2

Let $\omega$ be a circle with the center $O$ and $A$ and $C$ be two different points on $\omega$. For any third point $P$ of the circle let $X$ and $Y$ be the midpoints of the segments $AP$ and $CP$. Finally, let $H$ be the orthocenter (the point of intersection of the altitudes) of the triangle $OXY$ . Prove that the position of the point H does not depend on the choice of $P$. (Artemiy Sokolov)

Estonia Open Junior - geometry, 1999.2.3

On the plane there are two non-intersecting circles with equal radii and with centres $O_1$ and $O_2$, line $s$ going through these centres, and their common tangent $t$. The third circle is tangent to these two circles in points $K$ and $L$ respectively, line $s$ in point $M$ and line $t$ in point $P$. The point of tangency of line $t$ and the first circle is $N$. a) Find the length of the segment $O_1O_2$. b) Prove that the points $M, K$ and $N$ lie on the same line

2004 Swedish Mathematical Competition, 1

Tags: geometry , circles , area
Two circles in the plane, both of radius $R$, intersect at a right angle. Compute the area of the intersection of the interiors of the two circles.

2012 Kyiv Mathematical Festival, 1

Is it possible to place $2012$ distinct circles with the same diameter on the plane, such that each circle touches at least three others circles?

2014 Junior Balkan Team Selection Tests - Romania, 5

Let $D$ and $E$ be the midpoints of sides $[AB]$ and $[AC]$ of the triangle $ABC$. The circle of diameter $[AB]$ intersects the line $DE$ on the opposite side of $AB$ than $C$, in $X$. The circle of diameter $[AC]$ intersects $DE$ on the opposite side of $AC$ than $B$ in $Y$ . Let $T$ be the intersection of $BX$ and $CY$. Prove that the orthocenter of triangle $XY T$ lies on $BC$.

1974 IMO Shortlist, 5

Let $A_r,B_r, C_r$ be points on the circumference of a given circle $S$. From the triangle $A_rB_rC_r$, called $\Delta_r$, the triangle $\Delta_{r+1}$ is obtained by constructing the points $A_{r+1},B_{r+1}, C_{r+1} $on $S$ such that $A_{r+1}A_r$ is parallel to $B_rC_r$, $B_{r+1}B_r$ is parallel to $C_rA_r$, and $C_{r+1}C_r$ is parallel to $A_rB_r$. Each angle of $\Delta_1$ is an integer number of degrees and those integers are not multiples of $45$. Prove that at least two of the triangles $\Delta_1,\Delta_2, \ldots ,\Delta_{15}$ are congruent.

2012 IMAC Arhimede, 2

Circles $k_1,k_2$ intersect at $B,C$ such that $BC$ is diameter of $k_1$.Tangent of $k_1$ at $C$ touches $k_2$ for the second time at $A$.Line $AB$ intersects $k_1$ at $E$ different from $B$, and line $CE$ intersects $k_2$ at F different from $C$. An arbitrary line through $E$ intersects segment $AF$ at $H$ and $k_1$ for the second time at $G$.If $BG$ and $AC$ intersect at $D$, prove $CH//DF$ .

2011 Balkan MO Shortlist, G2

Let $ABC$ be a triangle and let $O$ be its circumcentre. The internal and external bisectrices of the angle $BAC$ meet the line $BC$ at points $D$ and $E$, respectively. Let further $M$ and $L$ respectively denote the midpoints of the segments $BC$ and $DE$. The circles $ABC$ and $ALO$ meet again at point $N$. Show that the angles $BAN$ and $CAM$ are equal.

2016 Irish Math Olympiad, 4

Let $ABC$ be a triangle with $|AC| \ne |BC|$. Let $P$ and $Q$ be the intersection points of the line $AB$ with the internal and external angle bisectors at $C$, so that $P$ is between $A$ and $B$. Prove that if $M$ is any point on the circle with diameter $PQ$, then $\angle AMP = \angle BMP$.

Denmark (Mohr) - geometry, 2003.4

Tags: max , geometry , circles
Georg and his mother love pizza. They buy a pizza shaped as an equilateral triangle. Georg demands to be allowed to divide the pizza by a straight cut and then make the first choice. The mother accepts this reluctantly, but she wants to choose a point of the pizza through which the cut must pass. Determine the largest fraction of the pizza which the mother is certain to get by this procedure.

Champions Tournament Seniors - geometry, 2017.4

Let $AD$ be the bisector of triangle $ABC$. Circle $\omega$ passes through the vertex $A$ and touches the side $BC$ at point $D$. This circle intersects the sides $AC$ and $AB$ for the second time at points $M$ and $N$ respectively. Lines $BM$ and $CN$ intersect the circle for the second time $\omega$ at points $P$ and $Q$, respectively. Lines $AP$ and $AQ$ intersect side $BC$ at points $K$ and $L$, respectively. Prove that $KL=\frac12 BC$

2016 AMC 10, 21

Tags: circles , geometry
Circles with centers $P, Q$ and $R$, having radii $1, 2$ and $3$, respectively, lie on the same side of line $l$ and are tangent to $l$ at $P', Q'$ and $R'$, respectively, with $Q'$ between $P'$ and $R'$. The circle with center $Q$ is externally tangent to each of the other two circles. What is the area of triangle $PQR$? $\textbf{(A) } 0\qquad \textbf{(B) } \sqrt{\frac{2}{3}}\qquad\textbf{(C) } 1\qquad\textbf{(D) } \sqrt{6}-\sqrt{2}\qquad\textbf{(E) }\sqrt{\frac{3}{2}}$

Croatia MO (HMO) - geometry, 2015.3

Circles $k_1$ and $k_2$ intersect at points $M$ and $N$. The line $\ell$ intersects the circle $k_1$ at points $A$ and $C$, the circle $K_2$ at points $B$ and $D$ so that the points $A,B,C$ and $D$ lie on the line $\ell$ are in that order. Let $X$ a point on the line $MN$ such that the point $M$ is located between the points $X$ and $N$. Let $P$ be the intersection of lines $AX$ and $BM$, and $Q$ be the intersection of lines $DX$ and $CM$. If $K$ is the midpoint of segment $AD$ and $L$ is the midpoint of segment $BC$, prove that the lines $XK$ and $ML$ intersect on the line $PQ$.

1980 All Soviet Union Mathematical Olympiad, 289

Given a point $E$ on the diameter $AC$ of the certain circle. Draw a chord $BD$ to maximise the area of the quadrangle $ABCD$.

2025 Kosovo National Mathematical Olympiad`, P4

Let $ABC$ be a given triangle. Let $A_1$ and $A_2$ be points on the side $BC$. Let $B_1$ and $B_2$ be points on the side $CA$. Let $C_1$ and $C_2$ be points on the side $AB$. Suppose that the points $A_1,A_2,B_1,B_2,C_1$ and $C_2$ lie on a circle. Prove that the lines $AA_1, BB_1$ and $CC_1$ are concurrent if and only if $AA_2, BB_2$ and $CC_2$ are concurrent.

1986 Tournament Of Towns, (131) 7

On the circumference of a circle are $21$ points. Prove that among the arcs which join any two of these points, at least $100$ of them must subtend an angle at the centre of the circle not exceeding $120^o$ . ( A . F . Sidorenko)

2014 Saudi Arabia GMO TST, 1

Let $A, B,C$ be colinear points in this order, $\omega$ an arbitrary circle passing through $B$ and $C$, and $l$ an arbitrary line different from $BC$, passing through A and intersecting $\omega$ at $M$ and $N$. The bisectors of the angles $\angle CMB$ and $\angle CNB$ intersect $BC$ at $P$ and $Q$. Prove that $AP\cdot AQ = AB \cdot AC$.

1972 IMO Shortlist, 11

Consider a sequence of circles $K_1,K_2,K_3,K_4, \ldots$ of radii $r_1, r_2, r_3, r_4, \ldots$ , respectively, situated inside a triangle $ABC$. The circle $K_1$ is tangent to $AB$ and $AC$; $K_2$ is tangent to $K_1$, $BA$, and $BC$; $K_3$ is tangent to $K_2$, $CA$, and $CB$; $K_4$ is tangent to $K_3$, $AB$, and $AC$; etc. (a) Prove the relation \[r_1 \cot \frac 12 A+ 2 \sqrt{r_1r_2} + r_2 \cot \frac 12 B = r \left(\cot \frac 12 A + \cot \frac 12 B \right) \] where $r$ is the radius of the incircle of the triangle $ABC$. Deduce the existence of a $t_1$ such that \[r_1=r \cot \frac 12 B \cot \frac 12 C \sin^2 t_1\] (b) Prove that the sequence of circles $K_1,K_2, \ldots $ is periodic.

1987 Austrian-Polish Competition, 6

Let $C$ be a unit circle and $n \ge 1$ be a fixed integer. For any set $A$ of $n$ points $P_1,..., P_n$ on $C$ define $D(A) = \underset{d}{max}\, \underset{i}{min}\delta (P_i, d)$, where $d$ goes over all diameters of $C$ and $\delta (P, \ell)$ denotes the distance from point $P$ to line $\ell$. Let $F_n$ be the family of all such sets $A$. Determine $D_n = \underset{A\in F_n}{min} D(A)$ and describe all sets $A$ with $D(A) = D_n$.

Swiss NMO - geometry, 2009.7

Points $A, M_1, M_2$ and $C$ are on a line in this order. Let $k_1$ the circle with center $M_1$ passing through $A$ and $k_2$ the circle with center $M_2$ passing through $C$. The two circles intersect at points $E$ and $F$. A common tangent of $k_1$ and $k_2$, touches $k_1$ at $B$ and $k_2$ at $D$. Show that the lines $AB, CD$ and $EF$ intersect at one point.

1980 IMO Longlists, 10

Two circles $C_{1}$ and $C_{2}$ are (externally or internally) tangent at a point $P$. The straight line $D$ is tangent at $A$ to one of the circles and cuts the other circle at the points $B$ and $C$. Prove that the straight line $PA$ is an interior or exterior bisector of the angle $\angle BPC$.