This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 821

2008 Greece JBMO TST, 1

Given a point $A$ that lies on circle $c(o,R)$ (with center $O$ and radius $R$). Let $(e)$ be the tangent of the circle $c$ at point $A$ and a line $(d)$ that passes through point $O$ and intersects $(e)$ at point $M$ and the circle at points $B,C$ (let $B$ lie between $O$ and $A$). If $AM = R\sqrt3$ , prove that a) triangle $AMC$ is isosceles. b) circumcenter of triangle $AMC$ lies on circle $c$ .

2001 Estonia National Olympiad, 3

Tags: circles , geometry , square
A circle of radius $10$ is tangent to two adjacent sides of a square and intersects its two remaining sides at the endpoints of a diameter of the circle. Find the side length of the square.

2010 Contests, 1

Tags: geometry , circles
Consider a triangle $ABC$ such that $\angle A = 90^o, \angle C =60^o$ and $|AC|= 6$. Three circles with centers $A, B$ and $C$ are pairwise tangent in points on the three sides of the triangle. Determine the area of the region enclosed by the three circles (the grey area in the figure). [asy] unitsize(0.2 cm); pair A, B, C; real[] r; A = (6,0); B = (6,6*sqrt(3)); C = (0,0); r[1] = 3*sqrt(3) - 3; r[2] = 3*sqrt(3) + 3; r[3] = 9 - 3*sqrt(3); fill(arc(A,r[1],180,90)--arc(B,r[2],270,240)--arc(C,r[3],60,0)--cycle, gray(0.7)); draw(A--B--C--cycle); draw(Circle(A,r[1])); draw(Circle(B,r[2])); draw(Circle(C,r[3])); dot("$A$", A, SE); dot("$B$", B, NE); dot("$C$", C, SW); [/asy]

2016 Dutch IMO TST, 4

Tags: circles , fixed , geometry
Let $\Gamma_1$ be a circle with centre $A$ and $\Gamma_2$ be a circle with centre $B$, with $A$ lying on $\Gamma_2$. On $\Gamma_2$ there is a (variable) point $P$ not lying on $AB$. A line through $P$ is a tangent of $\Gamma_1$ at $S$, and it intersects $\Gamma_2$ again in $Q$, with $P$ and $Q$ lying on the same side of $AB$. A different line through $Q$ is tangent to $\Gamma_1$ at $T$. Moreover, let $M$ be the foot of the perpendicular to $AB$ through $P$. Let $N$ be the intersection of $AQ$ and $MT$. Show that $N$ lies on a line independent of the position of $P$ on $\Gamma_2$.

2016 Saudi Arabia BMO TST, 2

A circle with center $O$ passes through points $A$ and $C$ and intersects the sides $AB$ and $BC$ of triangle $ABC$ at points $K$ and $N$, respectively. The circumcircles of triangles $ABC$ and $KBN$ meet at distinct points $B$ and $M$. Prove that $\angle OMB = 90^o$.

2016 Romanian Master of Mathematics Shortlist, G1

Two circles, $\omega_1$ and $\omega_2$, centred at $O_1$ and $O_2$, respectively, meet at points $A$ and $B$. A line through $B$ meets $\omega_1$ again at $C$, and $\omega_2$ again at $D$. The tangents to $\omega_1$ and $\omega_2$ at $C$ and $D$, respectively, meet at $E$, and the line $AE$ meets the circle $\omega$ through $A, O_1, O_2$ again at $F$. Prove that the length of the segment $EF$ is equal to the diameter of $\omega$.

2005 Cuba MO, 1

Determine the smallest real number $a$ such that there is a square of side $a$ such that contains $5$ unit circles inside it without common interior points in pairs.

2011 Tournament of Towns, 7

$100$ red points divide a blue circle into $100$ arcs such that their lengths are all positive integers from $1$ to $100$ in an arbitrary order. Prove that there exist two perpendicular chords with red endpoints.

2022 Turkey Team Selection Test, 4

We have three circles $w_1$, $w_2$ and $\Gamma$ at the same side of line $l$ such that $w_1$ and $w_2$ are tangent to $l$ at $K$ and $L$ and to $\Gamma$ at $M$ and $N$, respectively. We know that $w_1$ and $w_2$ do not intersect and they are not in the same size. A circle passing through $K$ and $L$ intersect $\Gamma$ at $A$ and $B$. Let $R$ and $S$ be the reflections of $M$ and $N$ with respect to $l$. Prove that $A, B, R, S$ are concyclic.

2013 Irish Math Olympiad, 5

$A, B$ and $C$ are points on the circumference of a circle with centre $O$. Tangents are drawn to the circumcircles of triangles $OAB$ and $OAC$ at $P$ and $Q$ respectively, where $P$ and $Q$ are diametrically opposite $O$. The two tangents intersect at $K$. The line $CA$ meets the circumcircle of $\triangle OAB$ at $A$ and $X$. Prove that $X$ lies on the line $KO$.

Estonia Open Senior - geometry, 2010.1.4

Circle $c$ passes through vertices $A$ and $B$ of an isosceles triangle $ABC$, whereby line $AC$ is tangent to it. Prove that circle $c$ passes through the circumcenter or the incenter or the orthocenter of triangle $ABC$.

2020 Ukrainian Geometry Olympiad - April, 2

Let $\Gamma$ be a circle and $P$ be a point outside, $PA$ and $PB$ be tangents to $\Gamma$ , $A, B \in \Gamma$ . Point $K$ is an arbitrary point on the segment $AB$. The circumscirbed circle of $\vartriangle PKB$ intersects $\Gamma$ for the second time at point $T$, point $P'$ is symmetric to point $P$ wrt point $A$. Prove that $\angle PBT = \angle P'KA$.

Russian TST 2020, P2

Octagon $A_1A_2A_3A_4A_5A_6A_7A_8$ is inscribed in a circle $\Omega$ with center $O$. It is known that $A_1A_2\|A_5A_6$, $A_3A_4\|A_7A_8$ and $A_2A_3\|A_5A_8$. The circle $\omega_{12}$ passes through $A_1$, $A_2$ and touches $A_1A_6$; circle $\omega_{34}$ passes through $A_3$, $A_4$ and touches $A_3A_8$; the circle $\omega_{56}$ passes through $A_5$, $A_6$ and touches $A_5A_2$; the circle $\omega_{78}$ passes through $A_7$, $A_8$ and touches $A_7A_4$. The common external tangent to $\omega_{12}$ and $\omega_{34}$ cross the line passing through ${A_1A_6}\cap{A_3A_8}$ and ${A_5A_2}\cap{A_7A_4}$ at the point $X$. Prove that one of the common tangents to $\omega_{56}$ and $\omega_{78}$ passes through $X$.

2014 Swedish Mathematical Competition, 2

Three circles that touch each other externally have all their centers on one fourth circle with radius $R$. Show that the total area of the three circle disks is smaller than $4\pi R^2$.

2021 Brazil Team Selection Test, 3

Let $ABC$ be an acute triangle with $AC>CB$ and let $M$ be the midpoint of side $AB$. Denote by $Q$ the midpoint of the big arc $AB$ which cointais $C$ and by $B_1$ the point inside $AC$ such that $BC=CB_1$. $B_1Q$ touches $BC$ in $E$ and $K$ is the intersection of $(BB_1M)$ and $(ABC)$. Prove that $KC$ bissects $B_1E$.

Geometry Mathley 2011-12, 3.1

$AB,AC$ are tangent to a circle $(O)$, $B,C$ are the points of tangency. $Q$ is a point iside the angle $BAC$, on the ray $AQ$, take a point $P$ suc that $OP$ is perpendicular to $AQ$. The line $OP$ meets the circumcircles triangles $BPQ$ and $CPQ$ at $I, J$. Prove that $OI = OJ$. Hồ Quang Vinh

2016 ASMT, 10

Tags: geometry , circles
Circle $\omega_1$ has diameter $AB$, and circle $\omega_2$ has center $A$ and intersects $\omega_1$ at points $C$ and $D$. Let $E$ be the intersection of $AB$ and $CD$. Point $P$ is chosen on $\omega_2$ such that $P C = 8$, $P D = 14$, and $P E = 7$. Find the length of $P B$.

2008 Postal Coaching, 1

Let $ABCD$ be a trapezium in which $AB$ is parallel to $CD$. The circles on $AD$ and $BC$ as diameters intersect at two distinct points $P$ and $Q$. Prove that the lines $PQ,AC,BD$ are concurrent.

Denmark (Mohr) - geometry, 1991.5

Show that no matter how $15$ points are plotted within a circle of radius $2$ (circle border included), there will be a circle with radius $1$ (circle border including) which contains at least three of the $15$ points.

2019 Swedish Mathematical Competition, 4

Let $\Omega$ be a circle disk with radius $1$. Determine the minimum $r$ that has the following property: You can select three points on $\Omega$ so that each circle disk located in $\Omega$ and has a radius greater than $r$ contains at least one of the three points.

2011 Korea Junior Math Olympiad, 2

Let $ABCD$ be a cyclic quadrilateral inscirbed in circle $O$. Let the tangent to $O$ at $A$ meet $BC$ at $S$, and the tangent to $O$ at $B$ meet $CD$ at $T$. Circle with $S$ as its center and passing $A$ meets $BC$ at $E$, and $AE$ meets $O$ again at $F(\ne A)$. The circle with $T$ as its center and passing $B$ meets $CD$ at $K$. Let $P = BK \cap AC$. Prove that $P,F,D$ are collinear if and only if $AB = AP$.

2018 Adygea Teachers' Geometry Olympiad, 3

Two circles intersect at points $A$ and $B$. Through point $B$, a straight line intersects the circles at points $C$ and $D$, and then tangents to the circles are drawn through points $C$ and $D$. Prove that the points $A, D, C$ and $P$ - the intersection point of the tangents - lie on the same circle.

2007 Chile National Olympiad, 2

Given a $\triangle ABC$, determine which is the circle with the smallest area that contains it.

1998 Rioplatense Mathematical Olympiad, Level 3, 1

Consider an arc $AB$ of a circle $C$ and a point $P$ variable in that arc $AB$. Let $D$ be the midpoint of the arc $AP$ that doeas not contain $B$ and let $E$ be the midpoint of the arc $BP$ that does not contain $A$. Let $C_1$ be the circle with center $D$ passing through $A$ and $C_2$ be the circle with center $E$ passing through $B.$ Prove that the line that contains the intersection points of $C_1$ and $C_2$ passes through a fixed point.

KoMaL A Problems 2018/2019, A. 750

Tags: geometry , circles
Let $k_1,k_2,\ldots,k_5$ be five circles in the lane such that $k_1$ and $k_2$ are externally tangent to each other at point $T,$ $k_3$ and $k_4$ are exetrnally tangent to both $k_1$ and $k_2,$ $k_5$ is externally tangent to $k_3$ and $k_4$ at points $U$ and $V,$ respectively, and $k_5$ intersects $k_1$ at $P$ and $Q,$ like shown in the figure. Prove that \[\frac{PU}{QU}\cdot\frac{PV}{QV}=\frac{PT^2}{QT^2}.\]