Found problems: 821
Kyiv City MO Seniors 2003+ geometry, 2012.11.3
Inside the triangle $ABC$ choose the point $M$, and on the side $BC$ - the point $K$ in such a way that $MK || AB$. The circle passing through the points $M, \, \, K, \, \, C,$ crosses the side $AC$ for the second time at the point $N$, a circle passing through the points $M, \, \, N, \, \, A, $ crosses the side $AB$ for the second time at the point $Q$. Prove that $BM = KQ$.
(Nagel Igor)
2010 Oral Moscow Geometry Olympiad, 3
Two circles $w_1$ and $w_2$ intersect at points $A$ and $B$. Tangents $\ell_1$ and $\ell_2$ respectively are drawn to them through point $A$. The perpendiculars dropped from point $B$ to $\ell_2$ and $\ell_1$ intersects the circles $w_1$ and $w_2$, respectively, at points $K$ and $N$. Prove that points $K, A$ and $N$ lie on one straight line.
2003 Junior Balkan Team Selection Tests - Romania, 2
Two circles $C_1(O_1)$ and $C_2(O_2)$ with distinct radii meet at points $A$ and $B$. The tangent from $A$ to $C_1$ intersects the tangent from $B$ to $C_2$ at point $M$. Show that both circles are seen from $M$ under the same angle.
1998 Singapore Senior Math Olympiad, 2
Let $C$ be a circle in the plane. Let $C_1$ and $C_2$ be two non-intersecting circles touching $C$ internally at points $A$ and $B$ respectively (Fig. ). Suppose that $D$ and $E$ are two points on $C_1$ and $C_2$ respectively such that $DE$ is a common tangent of $C_1$ and $C_2$, and both $C_1$ and C2 are on the same side of $DE$. Let $F$ be the intersection point of $AD$ and $BE$. Prove that $F$ lies on $C$.
[img]https://cdn.artofproblemsolving.com/attachments/f/c/5c733db462ef8ec3d3f82bbb762f7f087fbd3d.png[/img]
2017 China Team Selection Test, 3
Let $ABCD$ be a quadrilateral and let $l$ be a line. Let $l$ intersect the lines $AB,CD,BC,DA,AC,BD$ at points $X,X',Y,Y',Z,Z'$ respectively. Given that these six points on $l$ are in the order $X,Y,Z,X',Y',Z'$, show that the circles with diameter $XX',YY',ZZ'$ are coaxal.
1978 Bulgaria National Olympiad, Problem 2
$k_1$ denotes one of the arcs formed by intersection of the circumference $k$ and the chord $AB$. $C$ is the middle point of $k_1$. On the half line (ray) $PC$ is drawn the segment $PM$. Find the locus formed from the point $M$ when $P$ is moving on $k_1$.
[i]G. Ganchev[/i]
Kvant 2019, M2559
Two not necessarily equal non-intersecting wooden disks, one gray and one black, are glued to a plane. An infinite angle with one gray side and one black side can be moved along the plane so that the disks remain outside the angle, while the colored sides of the angle are tangent to the disks of the same color (the tangency points are not the vertices). Prove that it is possible to draw a ray in the angle, starting from the vertex of the angle and such that no matter how the angle is positioned, the ray passes through some fixed point of the plane.
(Egor Bakaev, Ilya Bogdanov, Pavel Kozhevnikov, Vladimir Rastorguev) (Junior version [url=https://artofproblemsolving.com/community/c6h2094701p15140671]here[/url])
[hide=note]There was a mistake in the text of the problem 3, we publish here the correct version. The solutions were estimated according to the text published originally.[/hide]
2024 SG Originals, Q3
Let $ABC$ be a triangle. Consider three circles, centered at $A, B, C$, with respective radii $$\sqrt{AB \cdot AC},\sqrt{BC \cdot BA},\sqrt{CA \cdot CB}.$$ Given that there are six distinct pairwise intersections between these three circles, show that they lie on two concentric circles.
[i](Two circles are concentric if they have the same center.)[/i]
2015 Estonia Team Selection Test, 11
Let $M$ be the midpoint of the side $AB$ of a triangle $ABC$. A circle through point $C$ that has a point of tangency to the line $AB$ at point $A$ and a circle through point $C$ that has a point of tangency to the line $AB$ at point $B$ intersect the second time at point $N$. Prove that $|CM|^2 + |CN|^2 - |MN|^2 = |CA|^2 + |CB|^2 - |AB|^2$.
2021 ELMO Problems, 1
In $\triangle ABC$, points $P$ and $Q$ lie on sides $AB$ and $AC$, respectively, such that the circumcircle of $\triangle APQ$ is tangent to $BC$ at $D$. Let $E$ lie on side $BC$ such that $BD = EC$. Line $DP$ intersects the circumcircle of $\triangle CDQ$ again at $X$, and line $DQ$ intersects the circumcircle of $\triangle BDP$ again at $Y$. Prove that $D$, $E$, $X$, and $Y$ are concyclic.
2004 German National Olympiad, 2
Let $k$ be a circle with center $M.$ There is another circle $k_1$ whose center $M_1$ lies on $k,$ and we denote the line through $M$ and $M_1$ by $g.$ Let $T$ be a point on $k_1$ and inside $k.$ The tangent $t$ to $k_1$ at $T$ intersects $k$ in two points $A$ and $B.$ Denote the tangents (diifferent from $t$) to $k_1$ passing through $A$ and $B$ by $a$ and $b$, respectively. Prove that the lines $a,b,$ and $g$ are either concurrent or parallel.
1990 Bulgaria National Olympiad, Problem 5
Given a circular arc, find a triangle of the smallest possible area which covers the arc so that the endpoints of the arc lie on the same side of the triangle.
2004 All-Russian Olympiad Regional Round, 10.7
Circles $\omega_1$ and $\omega_2$ intersect at points $A$ and $B$. At point $A$ to $\omega_1$ and $\omega_2$ the tangents $\ell_1$ and $\ell_2$ are drawn respectively. The points $T_1$ and $T_2$ are chosen respectively on the circles $\omega_1$ and $\omega_2$ so that the angular measures of the arcs $T_1A$ and $AT_2$ are equal (the measure of the circular arc is calculated clockwise). The tangent $t_1$ at the point $ T_1$ to the circle $\omega_1$ intersects $\ell_2$ at the point $M_1$. Similarly, the tangent $t_2$ at the point $T_2$ to the circle $\omega_2$ intersects $\ell_1$ at point $M_2$. Prove that the midpoints of the segments $M_1M_2$ are on the same a straight line that does not depend on the position of points $T_1$, $T_2$.
2011 Sharygin Geometry Olympiad, 7
Circles $\omega$ and $\Omega$ are inscribed into the same angle. Line $\ell$ meets the sides of angles, $\omega$ and $\Omega$ in points $A$ and $F, B$ and $C, D$ and $E$ respectively (the order of points on the line is $A,B,C,D,E, F$). It is known that$ BC = DE$. Prove that $AB = EF$.
2014 Sharygin Geometry Olympiad, 14
In a given disc, construct a subset such that its area equals the half of the disc area and its intersection with its reflection over an arbitrary diameter has the area equal to the quarter of the disc area.
2019 Switzerland - Final Round, 1
Let $A$ be a point and let k be a circle through $A$. Let $B$ and $C$ be two more points on $k$. Let $X$ be the intersection of the bisector of $\angle ABC$ with $k$. Let $Y$ be the reflection of $A$ wrt point $X$, and $D$ the intersection of the straight line $YC$ with $k$. Prove that point $D$ is independent of the choice of $B$ and $C$ on the circle $k$.
2013 Poland - Second Round, 2
Circles $o_1$ and $o_2$ with centers in $O_1$ and $O_2$, respectively, intersect in two different points $A$ and $B$, wherein angle $O_1AO_2$ is obtuse. Line $O_1B$ intersects circle $o_2$ in point $C \neq B$. Line $O_2B$ intersects circle $o_1$ in point $D \neq B$. Show that point $B$ is incenter of triangle $ACD$.
2012 Swedish Mathematical Competition, 3
The catheti $AC$ and $BC$ in a right-angled triangle $ABC$ have lengths $b$ and $a$, respectively. A circle centered at $C$ is tangent to hypotenuse $AB$ at point $D$. The tangents to the circle through points $A$ and $B$ intersect the circle at points $E$ and $F$, respectively (where $E$ and $F$ are both different from $D$). Express the length of the segment $EF$ in terms of $a$ and $b$.
2013 India PRMO, 17
Let $S$ be a circle with centre $O$. A chord $AB$, not a diameter, divides $S$ into two regions $R_1$ and $R_2$ such that $O$ belongs to $R_2$. Let $S_1$ be a circle with centre in $R_1$, touching $AB$ at $X$ and $S$ internally. Let $S_2$ be a circle with centre in $R_2$, touching $AB$ at $Y$, the circle $S$ internally and passing through the centre of $S$. The point $X$ lies on the diameter passing through the centre of $S_2$ and $\angle YXO=30^o$. If the radius of $S_2$ is $100 $ then what is the radius of $S_1$?
1989 Austrian-Polish Competition, 4
Let $P$ be a convex polygon in the plane. Show that there exists a circle containing the entire polygon $P$ and having at least three adjacent vertices of $P$ on its boundary.
2001 Chile National Olympiad, 2
Prove that the only way to cover a square of side $1$ with a finite number of circles that do not overlap, it is with only one circle of radius greater than or equal to $\frac{1}{\sqrt2}$. Circles can occupy part of the outside of the square and be of different radii.
2001 BAMO, 4
A kingdom consists of $12$ cities located on a one-way circular road. A magician comes on the $13$th of every month to cast spells. He starts at the city which was the 5th down the road from the one that he started at during the last month (for example, if the cities are numbered $1–12$ clockwise, and the direction of travel is clockwise, and he started at city #$9$ last month, he will start at city #$2$ this month). At each city that he visits, the magician casts a spell if the city is not already under the spell, and then moves on to the next city. If he arrives at a city which is already under the spell, then he removes the spell from this city, and leaves the kingdom until the next month. Last Thanksgiving the capital city was free of the spell. Prove that it will be free of the spell this Thanksgiving as well.
2020 Adygea Teachers' Geometry Olympiad, 4
A circle is inscribed in an angle with vertex $O$, touching its sides at points $M$ and $N$. On an arc $MN$ nearest to point $O$, an arbitrary point $P$ is selected. At point $P$, a tangent is drawn to the circle $P$, intersecting the sides of the angle at points $A$ and $B$. Prove that that the length of the segment $AB$ is the smallest when $P$ is its midpoint.
1994 Chile National Olympiad, 4
Consider a box of dimensions $10$ cm $\times 16$ cm $\times 1$ cm. Determine the maximum number of balls of diameter $ 1$ cm that the box can contain.
2010 Puerto Rico Team Selection Test, 1
The circles in the figure have their centers at $C$ and $D$ and intersect at $A$ and $B$. Let $\angle ACB =60$, $\angle ADB =90^o$ and $DA = 1$ . Find the length of $CA$.
[img]https://cdn.artofproblemsolving.com/attachments/0/1/950a55984283091d15083fadcf35e8b95cb229.png[/img]