This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 241

OIFMAT II 2012, 4

Given a $ \vartriangle ABC $ with $ AB> AC $ and $ \angle BAC = 60^o$. Denote the circumcenter and orthocenter as $ O $ and $ H $ respectively. We also have that $ OH $ intersects $ AB $ in $ P $ and $ AC $ in $ Q $. Prove that $ PO = HQ $.

2005 Sharygin Geometry Olympiad, 18

On the plane are three straight lines $\ell_1, \ell_2,\ell_3$, forming a triangle, and the point $O$ is marked, the center of the circumscribed circle of this triangle. For an arbitrary point X of the plane, we denote by $X_i$ the point symmetric to the point X with respect to the line $\ell_i, i = 1,2,3$. a) Prove that for an arbitrary point $M$ the straight lines connecting the midpoints of the segments $O_1O_2$ and $M_1M_2, O_2O_3$ and $M_2M_3, O_3O_1$ and $M_3M_1$ intersect at one point, b) where can this intersection point lie?

2021 IMO, 3

Let $D$ be an interior point of the acute triangle $ABC$ with $AB > AC$ so that $\angle DAB = \angle CAD.$ The point $E$ on the segment $AC$ satisfies $\angle ADE =\angle BCD,$ the point $F$ on the segment $AB$ satisfies $\angle FDA =\angle DBC,$ and the point $X$ on the line $AC$ satisfies $CX = BX.$ Let $O_1$ and $O_2$ be the circumcenters of the triangles $ADC$ and $EXD,$ respectively. Prove that the lines $BC, EF,$ and $O_1O_2$ are concurrent.

VII Soros Olympiad 2000 - 01, 9.8

Given a triangle $ABC$. On its sides $BC$ , $CA$ and $AB$ , the points $A_1$ , $B_1$ and $C_1$ are taken, respectively , such that $2 \angle B_1 A_1 C_1 + \angle BAC = 180^o$ , $2 \angle A_1 C_1 B_1 + \angle ACB = 180^o$ , $2 \angle C_1 B_1 A_1 + \angle CBA = 180^o$ . Find the locus of the centers of the circles circumscribed about the triangles $A_1 B_1 C_1$ (all possible such triangles are considered).

2016 Thailand TSTST, 2

Let $\omega$ be a circle touching two parallel lines $\ell_1, \ell_2$, $\omega_1$ a circle touching $\ell_1$ at $A$ and $\omega$ externally at $C$, and $\omega_2$ a circle touching $\ell_2$ at $B$, $\omega$ externally at $D$, and $\omega_1$ externally at $E$. Prove that $AD, BC$ intersect at the circumcenter of $\vartriangle CDE$.

2015 India Regional MathematicaI Olympiad, 1

Let \(ABC\) be a triangle. Let \(B'\) denote the reflection of \(b\) in the internal angle bisector \(l\) of \(\angle A\).Show that the circumcentre of the triangle \(CB'I\) lies on the line \(l\) where \(I\) is the incentre of \(ABC\).

1956 Moscow Mathematical Olympiad, 333

Let $O$ be the center of the circle circumscribed around $\vartriangle ABC$, let $A_1, B_1, C_1$ be symmetric to $O$ through respective sides of $\vartriangle ABC$. Prove that all altitudes of $\vartriangle A_1B_1C_1$ pass through $O$, and all altitudes of $\vartriangle ABC$ pass through the center of the circle circumscribed around $\vartriangle A_1B_1C_1$.

1987 All Soviet Union Mathematical Olympiad, 454

Vertex $B$ of the $\angle ABC$ lies out the circle, and the $[BA)$ and $[BC)$ beams intersect it. Point $K$ belongs to the intersection of the $[BA)$ beam and the circumference. Chord $KP$ is orthogonal to the angle bisector of $\angle ABC$ . Line $(KP)$ intersects the beam $BC$ in the point $M$. Prove that the segment $[PM]$ is twice as long as the distance from the circle centre to the angle bisector of $\angle ABC$ .

2021 Austrian Junior Regional Competition, 2

A triangle $ABC$ with circumcenter $U$ is given, so that $\angle CBA = 60^o$ and $\angle CBU = 45^o$ apply. The straight lines $BU$ and $AC$ intersect at point $D$. Prove that $AD = DU$. (Karl Czakler)

2022 Saudi Arabia BMO + EGMO TST, 2.1

Let $ABC$ be an acute-angled triangle. Point $P$ is such that $AP = AB$ and $PB \parallel AC$. Point $Q$ is such that $AQ = AC$ and $CQ \parallel AB$. Segments $CP$ and $BQ$ meet at point $X$. Prove that the circumcenter of triangle $ABC$ lies on the circumcircle of triangle $PXQ$.

2025 Israel TST, P2

Given a cyclic quadrilateral $ABCD$, define $E$ as $AD \cap BC$ and $F$ as $AB \cap CD$. Let $\Omega_A$ be the circle passing through $A, D$ and tangent to $AB$, and let its center be $O_A$. Let $\Gamma_B$ be the circle passing through $B, C$ and tangent to $AB$, and let its center be $O_B$. Let $\Gamma_C$ be the circle passing through $B, C$ and tangent to $CD$, and let its center be $O_C$. Let $\Omega_D$ be the circle passing through $A, D$ and tangent to $CD$, and let its center be $O_D$. Prove that $O_AO_BO_CO_D$ is cyclic, and prove that it's center lies on $EF$.

2007 Sharygin Geometry Olympiad, 3

Given two circles intersecting at points $P$ and $Q$. Let C be an arbitrary point distinct from $P$ and $Q$ on the former circle. Let lines $CP$ and $CQ$ intersect again the latter circle at points A and B, respectively. Determine the locus of the circumcenters of triangles $ABC$.

2023 Brazil EGMO Team Selection Test, 1

Let $\Delta ABC$ be a triangle with orthocenter $H$ and $\Gamma$ be the circumcircle of $\Delta ABC$ with center $O$. Consider $N$ the center of the circle that passes through the feet of the heights of $\Delta ABC$ and $P$ the intersection of the line $AN$ with the circle $\Gamma$. Suppose that the line $AP$ is perpendicular to the line $OH$. Prove that $P$ belongs to the reflection of the line $OH$ by the line $BC$.

2023 Brazil National Olympiad, 2

Consider a triangle $ABC$ with $AB < AC$ and let $H$ and $O$ be its orthocenter and circumcenter, respectively. A line starting from $B$ cuts the lines $AO$ and $AH$ at $M$ and $M'$ so that $M'$ is the midpoint of $BM$. Another line starting from $C$ cuts the lines $AH$ and $AO$ at $N$ and $N'$ so that $N'$ is the midpoint of $CN$. Prove that $M, M', N, N'$ are on the same circle.

2015 IMO, 4

Triangle $ABC$ has circumcircle $\Omega$ and circumcenter $O$. A circle $\Gamma$ with center $A$ intersects the segment $BC$ at points $D$ and $E$, such that $B$, $D$, $E$, and $C$ are all different and lie on line $BC$ in this order. Let $F$ and $G$ be the points of intersection of $\Gamma$ and $\Omega$, such that $A$, $F$, $B$, $C$, and $G$ lie on $\Omega$ in this order. Let $K$ be the second point of intersection of the circumcircle of triangle $BDF$ and the segment $AB$. Let $L$ be the second point of intersection of the circumcircle of triangle $CGE$ and the segment $CA$. Suppose that the lines $FK$ and $GL$ are different and intersect at the point $X$. Prove that $X$ lies on the line $AO$. [i]Proposed by Greece[/i]

2012 Junior Balkan Team Selection Tests - Romania, 4

The quadrilateral $ABCD$ is inscribed in a circle centered at $O$, and $\{P\} = AC \cap BD, \{Q\} = AB \cap CD$. Let $R$ be the second intersection point of the circumcircles of the triangles $ABP$ and $CDP$. a) Prove that the points $P, Q$, and $R$ are collinear. b) If $U$ and $V$ are the circumcenters of the triangles $ABP$, and $CDP$, respectively, prove that the points $U, R, O, V$ are concyclic.