This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2014 Iran Geometry Olympiad (senior), 4:

A tangent line to circumcircle of acute triangle $ABC$ ($AC>AB$) at $A$ intersects with the extension of $BC$ at $P$. $O$ is the circumcenter of triangle $ABC$.Point $X$ lying on $OP$ such that $\measuredangle AXP=90^\circ$.Points $E$ and $F$ lying on $AB$ and $AC$,respectively,and they are in one side of line $OP$ such that $ \measuredangle EXP=\measuredangle ACX $ and $\measuredangle FXO=\measuredangle ABX $. $K$,$L$ are points of intersection $EF$ with circumcircle of triangle $ABC$.prove that $OP$ is tangent to circumcircle of triangle $KLX$. Author:Mehdi E'tesami Fard , Iran

2011 Mongolia Team Selection Test, 3

We are given an acute triangle $ABC$. Let $(w,I)$ be the inscribed circle of $ABC$, $(\Omega,O)$ be the circumscribed circle of $ABC$, and $A_0$ be the midpoint of altitude $AH$. $w$ touches $BC$ at point $D$. $A_0 D$ and $w$ intersect at point $P$, and the perpendicular from $I$ to $A_0 D$ intersects $BC$ at the point $M$. $MR$ and $MS$ lines touch $\Omega$ at $R$ and $S$ respectively [note: I am not entirely sure of what is meant by this, but I am pretty sure it means draw the tangents to $\Omega$ from $M$]. Prove that the points $R,P,D,S$ are concyclic. (proposed by E. Enkzaya, inspired by Vietnamese olympiad problem)

2012 Sharygin Geometry Olympiad, 2

A cyclic $n$-gon is divided by non-intersecting (inside the $n$-gon) diagonals to $n-2$ triangles. Each of these triangles is similar to at least one of the remaining ones. For what $n$ this is possible?

1993 IMO Shortlist, 7

Let $A$, $B$, $C$, $D$ be four points in the plane, with $C$ and $D$ on the same side of the line $AB$, such that $AC \cdot BD = AD \cdot BC$ and $\angle ADB = 90^{\circ}+\angle ACB$. Find the ratio \[\frac{AB \cdot CD}{AC \cdot BD}, \] and prove that the circumcircles of the triangles $ACD$ and $BCD$ are orthogonal. (Intersecting circles are said to be orthogonal if at either common point their tangents are perpendicuar. Thus, proving that the circumcircles of the triangles $ACD$ and $BCD$ are orthogonal is equivalent to proving that the tangents to the circumcircles of the triangles $ACD$ and $BCD$ at the point $C$ are perpendicular.)

2020 Sharygin Geometry Olympiad, 22

Let $\Omega$ be the circumcircle of cyclic quadrilateral $ABCD$. Consider such pairs of points $P$, $Q$ of diagonal $AC$ that the rays $BP$ and $BQ$ are symmetric with respect the bisector of angle $B$. Find the locus of circumcenters of triangles $PDQ$.

2010 Contests, 3

Let $AL$ and $BK$ be angle bisectors in the non-isosceles triangle $ABC$ ($L$ lies on the side $BC$, $K$ lies on the side $AC$). The perpendicular bisector of $BK$ intersects the line $AL$ at point $M$. Point $N$ lies on the line $BK$ such that $LN$ is parallel to $MK$. Prove that $LN = NA$.

2022 Vietnam National Olympiad, 3

Let $ABC$ be a triangle. Point $E,F$ moves on the opposite ray of $BA,CA$ such that $BF=CE$. Let $M,N$ be the midpoint of $BE,CF$. $BF$ cuts $CE$ at $D$ a) Suppost that $I$ is the circumcenter of $(DBE)$ and $J$ is the circumcenter of $(DCF)$, Prove that $MN \parallel IJ$ b) Let $K$ be the midpoint of $MN$ and $H$ be the orthocenter of triangle $AEF$. Prove that when $E$ varies on the opposite ray of $BA$, $HK$ go through a fixed point

2020 Yasinsky Geometry Olympiad, 5

Let $AL$ be the bisector of triangle $ABC$. Circle $\omega_1$ is circumscribed around triangle $ABL$. Tangent to $\omega_1$ at point $B$ intersects the extension of $AL$ at point $K$. The circle $\omega_2$ circumscribed around the triangle $CKL$ intersects $\omega_1$ a second time at point $Q$, with $Q$ lying on the side $AC$. Find the value of the angle $ABC$. (Vladislav Radomsky)

2013 Germany Team Selection Test, 3

Let $ABC$ be an acute-angled triangle with circumcircle $\omega$. Prove that there exists a point $J$ such that for any point $X$ inside $ABC$ if $AX,BX,CX$ intersect $\omega$ in $A_1,B_1,C_1$ and $A_2,B_2,C_2$ be reflections of $A_1,B_1,C_1$ in midpoints of $BC,AC,AB$ respectively then $A_2,B_2,C_2,J$ lie on a circle.

2012 Oral Moscow Geometry Olympiad, 6

Tangents drawn to the circumscribed circle of an acute-angled triangle $ABC$ at points $A$ and $C$, intersect at point $Z$. Let $AA_1, CC_1$ be altitudes. Line $A_1C_1$ intersects $ZA, ZC$ at points $X$ and $Y$, respectively. Prove that the circumscribed circles of the triangles $ABC$ and $XYZ$ are tangent.

2007 Moldova Team Selection Test, 1

Let $ABC$ be a triangle and $M,N,P$ be the midpoints of sides $BC, CA, AB$. The lines $AM, BN, CP$ meet the circumcircle of $ABC$ in the points $A_{1}, B_{1}, C_{1}$. Show that the area of triangle $ABC$ is at most the sum of areas of triangles $BCA_{1}, CAB_{1}, ABC_{1}$.

2009 Vietnam Team Selection Test, 1

Let an acute triangle $ ABC$ with curcumcircle $ (O)$. Call $ A_1,B_1,C_1$ are foots of perpendicular line from $ A,B,C$ to opposite side. $ A_2,B_2,C_2$ are reflect points of $ A_1,B_1,C_1$ over midpoints of $ BC,CA,AB$ respectively. Circle $ (AB_2C_2),(BC_2A_2),(CA_2B_2)$ cut $ (O)$ at $ A_3,B_3,C_3$ respectively. Prove that: $ A_1A_3,B_1B_3,C_1C_3$ are concurent.

1990 India Regional Mathematical Olympiad, 8

If the circumcenter and centroid of a triangle coincide, prove that it must be equilateral.

2002 Bundeswettbewerb Mathematik, 4

In an acute-angled triangle $ABC$, we consider the feet $H_a$ and $H_b$ of the altitudes from $A$ and $B$, and the intersections $W_a$ and $W_b$ of the angle bisectors from $A$ and $B$ with the opposite sides $BC$ and $CA$ respectively. Show that the centre of the incircle $I$ of triangle $ABC$ lies on the segment $H_aH_b$ if and only if the centre of the circumcircle $O$ of triangle $ABC$ lies on the segment $W_aW_b$.

2019 Serbia National Math Olympiad, 4

For a $\triangle ABC$ , let $A_1$ be the symmetric point of the intersection of angle bisector of $\angle BAC$ and $BC$ , where center of the symmetry is the midpoint of side $BC$, In the same way we define $B_1 $ ( on $AC$ ) and $C_1$ (on $AB$). Intersection of circumcircle of $\triangle A_1B_1C_1$ and line $AB$ is the set $\{Z,C_1 \}$, with $BC$ is the set $\{X,A_1\}$ and with $CA$ is the set $\{Y,B_1\}$. If the perpendicular lines from $X,Y,Z$ on $BC,CA$ and $ AB$ , respectively are concurrent , prove that $\triangle ABC$ is isosceles.

2008 Harvard-MIT Mathematics Tournament, 16

Point $ A$ lies at $ (0, 4)$ and point $ B$ lies at $ (3, 8)$. Find the $ x$-coordinate of the point $ X$ on the $ x$-axis maximizing $ \angle AXB$.

2016 Iranian Geometry Olympiad, 2

Let $\omega$ be the circumcircle of triangle $ABC$ with $AC > AB$. Let $X$ be a point on $AC$ and $Y$ be a point on the circle $\omega$, such that $CX = CY = AB$. (The points $A$ and $Y$ lie on different sides of the line $BC$). The line $XY$ intersects $\omega$ for the second time in point $P$. Show that $PB = PC$. by Iman Maghsoudi

1990 IMO Longlists, 6

Let $S, T$ be the circumcenter and centroid of triangle $ABC$, respectively. $M$ is a point in the plane of triangle $ABC$ such that $90^\circ \leq \angle SMT < 180^\circ$. $A_1, B_1, C_1$ are the intersections of $AM, BM, CM$ with the circumcircle of triangle $ABC$ respectively. Prove that $MA_1 + MB_1 + MC_1 \geq MA + MB + MC.$

2009 India National Olympiad, 5

Let $ ABC$ be an acute angled triangle and let $ H$ be its ortho centre. Let $ h_{max}$ denote the largest altitude of the triangle $ ABC$. Prove that: $AH \plus{} BH \plus{} CH\leq2h_{max}$

2015 Oral Moscow Geometry Olympiad, 6

In an acute-angled isosceles triangle $ABC$, altitudes $CC_1$ and $BB_1$ intersect the line passing through the vertex $A$ and parallel to the line $BC$, at points $P$ and $Q$. Let $A_0$ be the midpoint of side $BC$, and $AA_1$ the altitude. Lines $A_0C_1$ and $A_0B_1$ intersect line $PQ$ at points $K$ and $L$. Prove that the circles circumscribed around triangles $PQA_1, KLA_0, A_1B_1C_1$ and a circle with a diameter $AA_1$ intersect at one point.

2007 China Western Mathematical Olympiad, 2

Let $ C$ and $ D$ be two intersection points of circle $ O_1$ and circle $ O_2$. A line, passing through $ D$, intersects the circle $ O_1$ and the circle $ O_2$ at the points $ A$ and $ B$ respectively. The points $ P$ and $ Q$ are on circles $ O_1$ and $ O_2$ respectively. The lines $ PD$ and $ AC$ intersect at $ H$, and the lines $ QD$ and $ BC$ intersect at $ M$. Suppose that $ O$ is the circumcenter of the triangle $ ABC$. Prove that $ OD\perp MH$ if and only if $ P,Q,M$ and $ H$ are concyclic.

2017 Bosnia Herzegovina Team Selection Test, 1

Incircle of triangle $ ABC$ touches $ AB,AC$ at $ P,Q$. $ BI, CI$ intersect with $ PQ$ at $ K,L$. Prove that circumcircle of $ ILK$ is tangent to incircle of $ ABC$ if and only if $ AB\plus{}AC\equal{}3BC$.

2015 Junior Balkan Team Selection Tests - Moldova, 3

Let $\Omega$ be the circle circumscribed to the triangle $ABC$. Tangents taken to the circle $\Omega$ at points $A$ and $B$ intersects at the point $P$ , and the perpendicular bisector of $ (BC)$ cuts line $AC$ at point $Q$. Prove that lines $BC$ and $PQ$ are parallel.

2010 Bundeswettbewerb Mathematik, 3

On the sides of a triangle $XYZ$ to the outside construct similar triangles $YDZ, EXZ ,YXF$ with circumcenters $K, L ,M$ respectively. Here are $\angle ZDY = \angle ZXE = \angle FXY$ and $\angle YZD = \angle EZX = \angle YFX$. Show that the triangle $KLM$ is similar to the triangles . [img]https://cdn.artofproblemsolving.com/attachments/e/f/fe0d0d941015d32007b6c00b76b253e9b45ca5.png[/img]

2003 China Team Selection Test, 1

$ABC$ is an acute-angled triangle. Let $D$ be the point on $BC$ such that $AD$ is the bisector of $\angle A$. Let $E, F$ be the feet of perpendiculars from $D$ to $AC,AB$ respectively. Suppose the lines $BE$ and $CF$ meet at $H$. The circumcircle of triangle $AFH$ meets $BE$ at $G$ (apart from $H$). Prove that the triangle constructed from $BG$, $GE$ and $BF$ is right-angled.