This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2008 IberoAmerican, 5

Let $ ABC$ a triangle and $ X$, $ Y$ and $ Z$ points at the segments $ BC$, $ AC$ and $ AB$, respectively.Let $ A'$, $ B'$ and $ C'$ the circuncenters of triangles $ AZY$,$ BXZ$,$ CYX$, respectively.Prove that $ 4(A'B'C')\geq(ABC)$ with equality if and only if $ AA'$, $ BB'$ and $ CC'$ are concurrents. Note: $ (XYZ)$ denotes the area of $ XYZ$

2008 Tournament Of Towns, 3

In triangle $ABC, \angle A = 90^o$. $M$ is the midpoint of $BC$ and $H$ is the foot of the altitude from $A$ to $BC$. The line passing through $M$ and perpendicular to $AC$ meets the circumcircle of triangle $AMC$ again at $P$. If $BP$ intersects $AH$ at $K$, prove that $AK = KH$.

2016 Sharygin Geometry Olympiad, 2

Let $I$ and $I_a$ be the incenter and excenter (opposite vertex $A$) of a triangle $ABC$, respectively. Let $A'$ be the point on its circumcircle opposite to $A$, and $A_1$ be the foot of the altitude from $A$. Prove that $\angle IA_1I_a=\angle IA'I_a$. [i](Proposed by Pavel Kozhevnikov)[/i]

2018 Middle European Mathematical Olympiad, 6

Let $ABC$ be a triangle . The internal bisector of $ABC$ intersects the side $AC$ at $ L$ and the circumcircle of $ABC$ again at $W \neq B.$ Let $K$ be the perpendicular projection of $L$ onto $AW.$ the circumcircle of $BLC$ intersects line $CK$ again at $P \neq C.$ Lines $BP$ and $AW$ meet at point $T.$ Prove that $$AW=WT.$$

2020 Junior Macedonian National Olympiad, 4

Let $ABC$ be an isosceles triangle with base $AC$. Points $D$ and $E$ are chosen on the sides $AC$ and $BC$, respectively, such that $CD = DE$. Let $H, J,$ and $K$ be the midpoints of $DE, AE,$ and $BD$, respectively. The circumcircle of triangle $DHK$ intersects $AD$ at point $F$, whereas the circumcircle of triangle $HEJ$ intersects $BE$ at $G$. The line through $K$ parallel to $AC$ intersects $AB$ at $I$. Let $IH \cap GF =$ {$M$}. Prove that $J, M,$ and $K$ are collinear points.

2010 Slovenia National Olympiad, 3

Let $ABC$ be an acute triangle. A line parallel to $BC$ intersects the sides $AB$ and $AC$ at $D$ and $E$, respectively. The circumcircle of the triangle $ADE$ intersects the segment $CD$ at $F \ (F \neq D).$ Prove that the triangles $AFE$ and $CBD$ are similar.

2015 CentroAmerican, Problem 3

Let $ABCD$ be a cyclic quadrilateral with $AB<CD$, and let $P$ be the point of intersection of the lines $AD$ and $BC$.The circumcircle of the triangle $PCD$ intersects the line $AB$ at the points $Q$ and $R$. Let $S$ and $T$ be the points where the tangents from $P$ to the circumcircle of $ABCD$ touch that circle. (a) Prove that $PQ=PR$. (b) Prove that $QRST$ is a cyclic quadrilateral.

2017 Sharygin Geometry Olympiad, P11

A finite number of points is marked on the plane. Each three of them are not collinear. A circle is circumscribed around each triangle with marked vertices. Is it possible that all centers of these circles are also marked? [i]Proposed by A.Tolesnikov[/i]

2014 Contests, 3

Convex quadrilateral $ABCD$ has $\angle ABC = \angle CDA = 90^{\circ}$. Point $H$ is the foot of the perpendicular from $A$ to $BD$. Points $S$ and $T$ lie on sides $AB$ and $AD$, respectively, such that $H$ lies inside triangle $SCT$ and \[ \angle CHS - \angle CSB = 90^{\circ}, \quad \angle THC - \angle DTC = 90^{\circ}. \] Prove that line $BD$ is tangent to the circumcircle of triangle $TSH$.

2001 All-Russian Olympiad, 2

Let the circle $ {\omega}_{1}$ be internally tangent to another circle $ {\omega}_{2}$ at $ N$.Take a point $ K$ on $ {\omega}_{1}$ and draw a tangent $ AB$ which intersects $ {\omega}_{2}$ at $ A$ and $ B$. Let $M$ be the midpoint of the arc $ AB$ which is on the opposite side of $ N$. Prove that, the circumradius of the $ \triangle KBM$ doesnt depend on the choice of $ K$.

2014 Canada National Olympiad, 4

The quadrilateral $ABCD$ is inscribed in a circle. The point $P$ lies in the interior of $ABCD$, and $\angle P AB = \angle P BC = \angle P CD = \angle P DA$. The lines $AD$ and $BC$ meet at $Q$, and the lines $AB$ and $CD$ meet at $R$. Prove that the lines $P Q$ and $P R$ form the same angle as the diagonals of $ABCD$.

Geometry Mathley 2011-12, 10.2

Let $ABC$ be an acute triangle, not isoceles triangle and $(O), (I)$ be its circumcircle and incircle respectively. Let $A_1$ be the the intersection of the radical axis of $(O), (I)$ and the line $BC$. Let $A_2$ be the point of tangency (not on $BC$) of the tangent from $A_1$ to $(I)$. Points $B_1,B_2,C_1,C_2$ are defined in the same manner. Prove that (a) the lines $AA_2,BB_2,CC_2$ are concurrent. (b) the radical centers circles through triangles $BCA_2, CAB_2$ and $ABC_2$ are all on the line $OI$. Lê Phúc Lữ

2016 Vietnam Team Selection Test, 4

Given an acute triangle $ABC$ satisfying $\angle ACB<\angle ABC<\angle ACB+\dfrac{\angle BAC}{2}$. Let $D$ be a point on $BC$ such that $\angle ADC=\angle ACB+\dfrac{\angle BAC}{2}$. Tangent of circumcircle of $ABC$ at $A$ hits $BC$ at $E$. Bisector of $\angle AEB$ intersects $AD$ and $(ADE)$ at $G$ and $F$ respectively, $DF$ hits $AE$ at $H.$ a) Prove that circle with diameter $AE,DF,GH$ go through one common point. b) On the exterior bisector of $\angle BAC $ and ray $AC$ given point $K$ and $M$ respectively satisfying $KB=KD=KM$, On the exterior bisector of $\angle BAC$ and ray $AB$ given point $L$ and $N$ respectively satisfying $LC=LD=LN.$ Circle throughs $M,N$ and midpoint $I$ of $BC$ hits $BC$ at $P$ ($P\neq I$). Prove that $BM,CN,AP$ concurrent.

2016 Saudi Arabia BMO TST, 2

Let $I_a$ be the excenter of triangle $ABC$ with respect to $A$. The line $AI_a$ intersects the circumcircle of triangle ABC at $T$. Let $X$ be a point on segment $TI_a$ such that $X I_a^2 = XA \cdot X T$ The perpendicular line from $X$ to $BC$ intersects $BC$ at $A'$. Define $B'$ and $C'$ in the same way. Prove that $AA',BB'$ and $CC'$ are concurrent.

1989 IMO Shortlist, 14

A bicentric quadrilateral is one that is both inscribable in and circumscribable about a circle, i.e. both the incircle and circumcircle exists. Show that for such a quadrilateral, the centers of the two associated circles are collinear with the point of intersection of the diagonals.

2015 Saint Petersburg Mathematical Olympiad, 7

Let $BL$ be angle bisector of acute triangle $ABC$.Point $K$ choosen on $BL$ such that $\measuredangle AKC-\measuredangle ABC=90º$.point $S$ lies on the extention of $BL$ from $L$ such that $\measuredangle ASC=90º$.Point $T$ is diametrically opposite the point $K$ on the circumcircle of $\triangle AKC$.Prove that $ST$ passes through midpoint of arc $ABC$.(S. Berlov) [hide] :trampoline: my 100th post :trampoline: [/hide]

2004 Germany Team Selection Test, 3

Let $ABC$ be an isosceles triangle with $AC=BC$, whose incentre is $I$. Let $P$ be a point on the circumcircle of the triangle $AIB$ lying inside the triangle $ABC$. The lines through $P$ parallel to $CA$ and $CB$ meet $AB$ at $D$ and $E$, respectively. The line through $P$ parallel to $AB$ meets $CA$ and $CB$ at $F$ and $G$, respectively. Prove that the lines $DF$ and $EG$ intersect on the circumcircle of the triangle $ABC$. [i]Proposed by Hojoo Lee, Korea[/i]

2008 Sharygin Geometry Olympiad, 6

(B.Frenkin) The product of two sides in a triangle is equal to $ 8Rr$, where $ R$ and $ r$ are the circumradius and the inradius of the triangle. Prove that the angle between these sides is less than $ 60^{\circ}$.

Geometry Mathley 2011-12, 15.4

Let $ABC$ be a fixed triangle. Point $D$ is an arbitrary point on the side $BC$. Point $P$ is fixed on $AD$. The circumcircle of triangle $BPD$ meets $AB$ at $E$ distinct from $B$. Point $Q$ varies on $AP$. Let $BQ$ and $CQ$ meet the circumcircles of triangles $BPD, CPD$ respectively at $F,Z$ distinct from $B,C$. Prove that the circumcircle $EFZ$ is through a fixed point distinct from $E$ and this fixed point is on the circumcircle of triangle $CPD$. Kostas Vittas

2015 Saudi Arabia Pre-TST, 3.1

Let $ABC$ be a triangle, $I$ its incenter, and $D$ a point on the arc $BC$ of the circumcircle of $ABC$ not containing $A$. The bisector of the angle $\angle ADB$ intesects the segment $AB$ at $E$. The bisector of the angle $\angle CDA$ intesects the segment $AC$ at $F$. Prove that the points $E, F,I$ are collinear. (Malik Talbi)

2003 Moldova Team Selection Test, 3

Let $ ABCD$ be a quadrilateral inscribed in a circle of center $ O$. Let M and N be the midpoints of diagonals $ AC$ and $ BD$, respectively and let $ P$ be the intersection point of the diagonals $ AC$ and $ BD$ of the given quadrilateral .It is known that the points $ O,M,Np$ are distinct. Prove that the points $ O,N,A,C$ are concyclic if and only if the points $ O,M,B,D$ are concyclic. [i]Proposer[/i]: [b]Dorian Croitoru[/b]

2008 IMO, 1

Let $ H$ be the orthocenter of an acute-angled triangle $ ABC$. The circle $ \Gamma_{A}$ centered at the midpoint of $ BC$ and passing through $ H$ intersects the sideline $ BC$ at points $ A_{1}$ and $ A_{2}$. Similarly, define the points $ B_{1}$, $ B_{2}$, $ C_{1}$ and $ C_{2}$. Prove that the six points $ A_{1}$, $ A_{2}$, $ B_{1}$, $ B_{2}$, $ C_{1}$ and $ C_{2}$ are concyclic. [i]Author: Andrey Gavrilyuk, Russia[/i]

2011 All-Russian Olympiad Regional Round, 9.2

Consider an isosceles triangle $ABC$ with $AB=AC$. Point $D$ is on the smaller arc $AB$ of its circumcirle. Point $E$ lies on the continuation of segment $AD$ beyond point $D$ so that both $A$ and $E$ lie in the same half-plane relative to $BC$. The circumcirle of triangle $BDE$ intersects side $AB$ at point $F$. Prove that lines $EF$ and $BC$ are parallel. (Author: R. Zhenodarov)

2005 Brazil National Olympiad, 5

Let $ABC$ be a triangle with all angles $\leq 120^{\circ}$. Let $F$ be the Fermat point of triangle $ABC$, that is, the interior point of $ABC$ such that $\angle AFB = \angle BFC = \angle CFA = 120^\circ$. For each one of the three triangles $BFC$, $CFA$ and $AFB$, draw its Euler line - that is, the line connecting its circumcenter and its centroid. Prove that these three Euler lines pass through one common point. [i]Remark.[/i] The Fermat point $F$ is also known as the [b]first Fermat point[/b] or the [b]first Toricelli point[/b] of triangle $ABC$. [i]Floor van Lamoen[/i]

2024 USA TSTST, 4

Let $ABCD$ be a quadrilateral inscribed in a circle with center $O$ and $E$ be the intersection of segments $AC$ and $BD$. Let $\omega_1$ be the circumcircle of $ADE$ and $\omega_2$ be the circumcircle of $BCE$. The tangent to $\omega_1$ at $A$ and the tangent to $\omega_2$ at $C$ meet at $P$. The tangent to $\omega_1$ at $D$ and the tangent to $\omega_2$ at $B$ meet at $Q$. Show that $OP=OQ$. [i]Merlijn Staps[/i]