This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2005 Germany Team Selection Test, 2

Let $\Gamma$ be a circle and let $d$ be a line such that $\Gamma$ and $d$ have no common points. Further, let $AB$ be a diameter of the circle $\Gamma$; assume that this diameter $AB$ is perpendicular to the line $d$, and the point $B$ is nearer to the line $d$ than the point $A$. Let $C$ be an arbitrary point on the circle $\Gamma$, different from the points $A$ and $B$. Let $D$ be the point of intersection of the lines $AC$ and $d$. One of the two tangents from the point $D$ to the circle $\Gamma$ touches this circle $\Gamma$ at a point $E$; hereby, we assume that the points $B$ and $E$ lie in the same halfplane with respect to the line $AC$. Denote by $F$ the point of intersection of the lines $BE$ and $d$. Let the line $AF$ intersect the circle $\Gamma$ at a point $G$, different from $A$. Prove that the reflection of the point $G$ in the line $AB$ lies on the line $CF$.

2014 Federal Competition For Advanced Students, P2, 6

Let $U$ be the center of the circumcircle of the acute-angled triangle $ABC$. Let $M_A, M_B$ and $M_C$ be the circumcenters of triangles $UBC, UAC$ and $UAB$ respecrively. For which triangles $ABC$ is the triangle $M_AM_BM_C$ similar to the starting triangle (with a suitable order of the vertices)?

2003 IMO Shortlist, 7

Let $ABC$ be a triangle with semiperimeter $s$ and inradius $r$. The semicircles with diameters $BC$, $CA$, $AB$ are drawn on the outside of the triangle $ABC$. The circle tangent to all of these three semicircles has radius $t$. Prove that \[\frac{s}{2}<t\le\frac{s}{2}+\left(1-\frac{\sqrt{3}}{2}\right)r. \] [i]Alternative formulation.[/i] In a triangle $ABC$, construct circles with diameters $BC$, $CA$, and $AB$, respectively. Construct a circle $w$ externally tangent to these three circles. Let the radius of this circle $w$ be $t$. Prove: $\frac{s}{2}<t\le\frac{s}{2}+\frac12\left(2-\sqrt3\right)r$, where $r$ is the inradius and $s$ is the semiperimeter of triangle $ABC$. [i]Proposed by Dirk Laurie, South Africa[/i]

2013 Iran MO (3rd Round), 5

Let $ABC$ be triangle with circumcircle $(O)$. Let $AO$ cut $(O)$ again at $A'$. Perpendicular bisector of $OA'$ cut $BC$ at $P_A$. $P_B,P_C$ define similarly. Prove that : I) Point $P_A,P_B,P_C$ are collinear. II ) Prove that the distance of $O$ from this line is equal to $\frac {R}{2}$ where $R$ is the radius of the circumcircle.

2011 IMO Shortlist, 1

Let $ABC$ be an acute triangle. Let $\omega$ be a circle whose centre $L$ lies on the side $BC$. Suppose that $\omega$ is tangent to $AB$ at $B'$ and $AC$ at $C'$. Suppose also that the circumcentre $O$ of triangle $ABC$ lies on the shorter arc $B'C'$ of $\omega$. Prove that the circumcircle of $ABC$ and $\omega$ meet at two points. [i]Proposed by Härmel Nestra, Estonia[/i]

JBMO Geometry Collection, 2010

Let $AL$ and $BK$ be angle bisectors in the non-isosceles triangle $ABC$ ($L$ lies on the side $BC$, $K$ lies on the side $AC$). The perpendicular bisector of $BK$ intersects the line $AL$ at point $M$. Point $N$ lies on the line $BK$ such that $LN$ is parallel to $MK$. Prove that $LN = NA$.

2020 Turkey EGMO TST, 1

$H$ is the orthocenter of a non-isosceles acute triangle $\triangle ABC$. $M$ is the midpoint of $BC$ and $BB_1, CC_1$ are two altitudes of $\triangle ABC$. $N$ is the midpoint of $B_1C_1$. Prove that $AH$ is tangent to the circumcircle of $\triangle MNH$.

1995 Mexico National Olympiad, 2

Consider 6 points on a plane such that 8 of the distances between them are equal to 1. Prove that there are at least 3 points that form an equilateral triangle.

2020 Serbia National Math Olympiad, 4

In a trapezoid $ABCD$ such that the internal angles are not equal to $90^{\circ}$, the diagonals $AC$ and $BD$ intersect at the point $E$. Let $P$ and $Q$ be the feet of the altitudes from $A$ and $B$ to the sides $BC$ and $AD$ respectively. Circumscribed circles of the triangles $CEQ$ and $DEP$ intersect at the point $F\neq E$. Prove that the lines $AP$, $BQ$ and $EF$ are either parallel to each other, or they meet at exactly one point.

2016 Azerbaijan Junior Mathematical Olympiad, 4

Let $O$ be the circumcenter of $\triangle ABC.$ The circle $k$ passing through $A$ and $B$ cuts $AC$ and $BC$ at $P$ and $Q,$ respectively. Prove that $PQ$ and $OC$ are perpendicular.

2022 Germany Team Selection Test, 3

Let $ABC$ be a triangle with orthocenter $H$ and circumcenter $O$. Let $P$ be a point in the plane such that $AP \perp BC$. Let $Q$ and $R$ be the reflections of $P$ in the lines $CA$ and $AB$, respectively. Let $Y$ be the orthogonal projection of $R$ onto $CA$. Let $Z$ be the orthogonal projection of $Q$ onto $AB$. Assume that $H \neq O$ and $Y \neq Z$. Prove that $YZ \perp HO$. [asy] import olympiad; unitsize(30); pair A,B,C,H,O,P,Q,R,Y,Z,Q2,R2,P2; A = (-14.8, -6.6); B = (-10.9, 0.3); C = (-3.1, -7.1); O = circumcenter(A,B,C); H = orthocenter(A,B,C); P = 1.2 * H - 0.2 * A; Q = reflect(A, C) * P; R = reflect(A, B) * P; Y = foot(R, C, A); Z = foot(Q, A, B); P2 = foot(A, B, C); Q2 = foot(P, C, A); R2 = foot(P, A, B); draw(B--(1.6*A-0.6*B)); draw(B--C--A); draw(P--R, blue); draw(R--Y, red); draw(P--Q, blue); draw(Q--Z, red); draw(A--P2, blue); draw(O--H, darkgreen+linewidth(1.2)); draw((1.4*Z-0.4*Y)--(4.6*Y-3.6*Z), red+linewidth(1.2)); draw(rightanglemark(R,Y,A,10), red); draw(rightanglemark(Q,Z,B,10), red); draw(rightanglemark(C,Q2,P,10), blue); draw(rightanglemark(A,R2,P,10), blue); draw(rightanglemark(B,P2,H,10), blue); label("$\textcolor{blue}{H}$",H,NW); label("$\textcolor{blue}{P}$",P,N); label("$A$",A,W); label("$B$",B,N); label("$C$",C,S); label("$O$",O,S); label("$\textcolor{blue}{Q}$",Q,E); label("$\textcolor{blue}{R}$",R,W); label("$\textcolor{red}{Y}$",Y,S); label("$\textcolor{red}{Z}$",Z,NW); dot(A, filltype=FillDraw(black)); dot(B, filltype=FillDraw(black)); dot(C, filltype=FillDraw(black)); dot(H, filltype=FillDraw(blue)); dot(P, filltype=FillDraw(blue)); dot(Q, filltype=FillDraw(blue)); dot(R, filltype=FillDraw(blue)); dot(Y, filltype=FillDraw(red)); dot(Z, filltype=FillDraw(red)); dot(O, filltype=FillDraw(black)); [/asy]

2013 Junior Balkan Team Selection Tests - Romania, 4

Let $H$ be the orthocenter of an acute-angled triangle $ABC$ and $P$ a point on the circumcenter of triangle $ABC$. Prove that the Simson line of $P$ bisects the segment $[P H]$.

2010 Contests, 2

The orthogonal projections of the vertices $A, B, C$ of the tetrahedron $ABCD$ on the opposite faces are denoted by $A', B', C'$ respectively. Suppose that point $A'$ is the circumcenter of the triangle $BCD$, point $B'$ is the incenter of the triangle $ACD$ and $C'$ is the centroid of the triangle $ABD$. Prove that tetrahedron $ABCD$ is regular.

2006 Baltic Way, 15

Let the medians of the triangle $ABC$ intersect at point $M$. A line $t$ through $M$ intersects the circumcircle of $ABC$ at $X$ and $Y$ so that $A$ and $C$ lie on the same side of $t$. Prove that $BX\cdot BY=AX\cdot AY+CX\cdot CY$.

2003 Turkey MO (2nd round), 2

A circle which is tangent to the sides $ [AB]$ and $ [BC]$ of $ \triangle ABC$ is also tangent to its circumcircle at the point $ T$. If $ I$ is the incenter of $ \triangle ABC$ , show that $ \widehat{ATI}\equal{}\widehat{CTI}$

2015 USA Team Selection Test, 1

Let $ABC$ be a non-isosceles triangle with incenter $I$ whose incircle is tangent to $\overline{BC}$, $\overline{CA}$, $\overline{AB}$ at $D$, $E$, $F$, respectively. Denote by $M$ the midpoint of $\overline{BC}$. Let $Q$ be a point on the incircle such that $\angle AQD = 90^{\circ}$. Let $P$ be the point inside the triangle on line $AI$ for which $MD = MP$. Prove that either $\angle PQE = 90^{\circ}$ or $\angle PQF = 90^{\circ}$. [i]Proposed by Evan Chen[/i]

Geometry Mathley 2011-12, 8.2

Let $ABC$ be a triangle, $d$ a line passing through $A$ and parallel to $BC$. A point $M$ distinct from $A$ is chosen on $d$. $I$ is the incenter of triangle $ABC, K,L$ are the the points of symmetry of $M$ about $IB, IC$. Let $BK$ meet $CL$ at $N$. Prove that $AN$ is tangent to circumcircle of triangle $ABC$. Đỗ Thanh Sơn

1991 Vietnam Team Selection Test, 1

1.) In the plane let us consider a set $S$ consisting of $n \geq 3$ distinct points satisfying the following three conditions: [b]I.[/b] The distance between any two points $\in S$ is not greater than 1. [b]II.[/b] For every point $A \in S$, there are exactly two “neighbor” points, i.e. two points $X, Y \in S$ for which $AX = AY = 1$. [b]III. [/b] For arbitrary two points $A, B \in S$, let $A', A''$ be the two neighbors of $A, B', B''$ the two neighbors of $B$, then $A'AA'' = B'BB''$. Is there such a set $S$ if $n = 1991$? If $n = 2000$ ? Explain your answer.

2018 JBMO Shortlist, G3

Let $\triangle ABC$ and $A'$,$B'$,$C'$ the symmetrics of vertex over opposite sides.The intersection of the circumcircles of $\triangle ABB'$ and $\triangle ACC'$ is $A_1$.$B_1$ and $C_1$ are defined similarly.Prove that lines $AA_1$,$BB_1$ and $CC_1$ are concurent.

2015 China Team Selection Test, 3

Let $ \triangle ABC $ be an acute triangle with circumcenter $ O $ and centroid $ G .$ Let $ D $ be the midpoint of $ BC $ and $ E\in \odot (BC) $ be a point inside $ \triangle ABC $ such that $ AE \perp BC . $ Let $ F=EG \cap OD $ and $ K, L $ be the point lie on $ BC $ such that $ FK \parallel OB, FL \parallel OC . $ Let $ M \in AB $ be a point such that $ MK \perp BC $ and $ N \in AC $ be a point such that $ NL \perp BC . $ Let $ \omega $ be a circle tangent to $ OB, OC $ at $ B, C, $ respectively $ . $ Prove that $ \odot (AMN) $ is tangent to $ \omega $

2014 Contests, 2

The center of the circumcircle of the acute triangle $ABC$ is $M$, and the circumcircle of $ABM$ meets $BC$ and $AC$ at $P$ and $Q$ ($P\ne B$). Show that the extension of the line segment $CM$ is perpendicular to $PQ$.

2021 Israel Olympic Revenge, 3

Let $ABC$ be a triangle. A point $P$ is chosen inside $\triangle ABC$ such that $\angle BPC+\angle BAC=180^{\circ}$. The lines $AP,BP,CP$ intersect $BC,CA,AB$ at $P_A,P_B,P_C$ respectively. Let $X_A$ be the second intersection of the circumcircles of $\triangle ABC$ and $\triangle AP_BP_C$ . Similarly define $X_B,X_C$. Let $B'$ be the intersection of lines $AX_A,CX_C$, and let $C'$ be the intersection of lines $AX_A,BX_B$. Prove that lines $BB'$ and $CC'$ intersect on the circumcircle of $\triangle AP_BP_C$.

Estonia Open Senior - geometry, 2009.2.4

a) An altitude of a triangle is also a tangent to its circumcircle. Prove that some angle of the triangle is larger than $90^o$ but smaller than $135^o$. b) Some two altitudes of the triangle are both tangents to its circumcircle. Find the angles of the triangle.

1997 Pre-Preparation Course Examination, 5

Let $ABC$ be an acute angled triangle, $O$ be the circumcenter of $ABC$, and $R$ be the cicumradius. $AO$ meets the circumcircle of $BOC$ at $A'$, $BO$ meets the circumcircle of $COA$, and $CO$ meets the circumcircle of $AOB$ at $C'$. Prove that \[OA' \cdot OB' \cdot OC' \geq 8R^3.\] When does inequality occur?

2020 Francophone Mathematical Olympiad, 1

Let $ABC$ be a triangle such that $AB <AC$, $\omega$ its inscribed circle and $\Gamma$ its circumscribed circle. Let also $\omega_b$ be the excircle relative to vertex $B$, then $B'$ is the point of tangency between $\omega_b$ and $(AC)$. Similarly, let the circle $\omega_c$ be the excircle exinscribed relative to vertex $C$, then $C'$ is the point of tangency between $\omega_c$ and $(AB)$. Finally, let $I$ be the center of $\omega$ and $X$ the point of $\Gamma$ such that $\angle XAI$ is a right angle. Prove that the triangles $XBC'$ and $XCB'$ are congruent.