This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2014 Contests, 2

Let $ AB$ be the diameter of semicircle $O$ , $C, D $ be points on the arc $AB$, $P, Q$ be respectively the circumcenter of $\triangle OAC $ and $\triangle OBD $ . Prove that:$CP\cdot CQ=DP \cdot DQ$.[asy] import cse5; import olympiad; unitsize(3.5cm); dotfactor=4; pathpen=black; real h=sqrt(55/64); pair A=(-1,0), O=origin, B=(1,0),C=shift(-3/8,h)*O,D=shift(4/5,3/5)*O,P=circumcenter(O,A,C), Q=circumcenter(O,D,B); D(arc(O,1,0,180),darkgreen); D(MP("A",A,W)--MP("C",C,N)--MP("P",P,SE)--MP("D",D,E)--MP("Q",Q,E)--C--MP("O",O,S)--D--MP("B",B,E)--cycle,deepblue); D(O); [/asy]

2014 District Olympiad, 3

Let $ABCDEF$ be a regular hexagon with side length $a$. At point $A$, the perpendicular $AS$, with length $2a\sqrt{3}$, is erected on the hexagon's plane. The points $M, N, P, Q,$ and $R$ are the projections of point $A$ on the lines $SB, SC, SD, SE,$ and $SF$, respectively. [list=a] [*]Prove that the points $M, N, P, Q, R$ lie on the same plane. [*]Find the measure of the angle between the planes $(MNP)$ and $(ABC)$.[/list]

2012 Iran MO (2nd Round), 3

The incircle of triangle $ABC$, is tangent to sides $BC,CA$ and $AB$ in $D,E$ and $F$ respectively. The reflection of $F$ with respect to $B$ and the reflection of $E$ with respect to $C$ are $T$ and $S$ respectively. Prove that the incenter of triangle $AST$ is inside or on the incircle of triangle $ABC$. [i]Proposed by Mehdi E'tesami Fard[/i]

2017 Pan-African Shortlist, G3

Let $ABCDE$ be a regular pentagon, and $F$ some point on the arc $AB$ of the circumcircle of $ABCDE$. Show that \[ \frac{FD}{FE + FC} = \frac{FB + FA}{FD} = \frac{-1 + \sqrt{5}}{2}, \] and that $FD + FB + FA = FE + FC$.

2000 Iran MO (3rd Round), 2

Call two circles in three-dimensional space pairwise tangent at a point $ P$ if they both pass through $ P$ and lines tangent to each circle at $ P$ coincide. Three circles not all lying in a plane are pairwise tangent at three distinct points. Prove that there exists a sphere which passes through the three circles.

1996 IMO, 5

Let $ ABCDEF$ be a convex hexagon such that $ AB$ is parallel to $ DE$, $ BC$ is parallel to $ EF$, and $ CD$ is parallel to $ FA$. Let $ R_{A},R_{C},R_{E}$ denote the circumradii of triangles $ FAB,BCD,DEF$, respectively, and let $ P$ denote the perimeter of the hexagon. Prove that \[ R_{A} \plus{} R_{C} \plus{} R_{E}\geq \frac {P}{2}. \]

2014 India IMO Training Camp, 3

In a triangle $ABC$, points $X$ and $Y$ are on $BC$ and $CA$ respectively such that $CX=CY$,$AX$ is not perpendicular to $BC$ and $BY$ is not perpendicular to $CA$.Let $\Gamma$ be the circle with $C$ as centre and $CX$ as its radius.Find the angles of triangle $ABC$ given that the orthocentres of triangles $AXB$ and $AYB$ lie on $\Gamma$.

2004 Baltic Way, 18

A ray emanating from the vertex $A$ of the triangle $ABC$ intersects the side $BC$ at $X$ and the circumcircle of triangle $ABC$ at $Y$. Prove that $\frac{1}{AX}+\frac{1}{XY}\geq \frac{4}{BC}$.

2005 Taiwan TST Round 3, 2

Let $\Gamma$ be a circle and let $d$ be a line such that $\Gamma$ and $d$ have no common points. Further, let $AB$ be a diameter of the circle $\Gamma$; assume that this diameter $AB$ is perpendicular to the line $d$, and the point $B$ is nearer to the line $d$ than the point $A$. Let $C$ be an arbitrary point on the circle $\Gamma$, different from the points $A$ and $B$. Let $D$ be the point of intersection of the lines $AC$ and $d$. One of the two tangents from the point $D$ to the circle $\Gamma$ touches this circle $\Gamma$ at a point $E$; hereby, we assume that the points $B$ and $E$ lie in the same halfplane with respect to the line $AC$. Denote by $F$ the point of intersection of the lines $BE$ and $d$. Let the line $AF$ intersect the circle $\Gamma$ at a point $G$, different from $A$. Prove that the reflection of the point $G$ in the line $AB$ lies on the line $CF$.

2007 Postal Coaching, 4

Let $BE$ and $CF$ be the bisectors of $\angle B$ and $\angle C$ of a triangle $ABC$ whose incentre is $I$. Suppose $EF$, extended, meets the circumcircle of $ABC$ in $M,N$. Show that the circumradius of $MIN$ is twice that of $ABC$.

2007 China Team Selection Test, 1

Let convex quadrilateral $ ABCD$ be inscribed in a circle centers at $ O.$ The opposite sides $ BA,CD$ meet at $ H$, the diagonals $ AC,BD$ meet at $ G.$ Let $ O_{1},O_{2}$ be the circumcenters of triangles $ AGD,BGC.$ $ O_{1}O_{2}$ intersects $ OG$ at $ N.$ The line $ HG$ cuts the circumcircles of triangles $ AGD,BGC$ at $ P,Q$, respectively. Denote by $ M$ the midpoint of $ PQ.$ Prove that $ NO \equal{} NM.$

2019 Iran Team Selection Test, 3

In triangle $ABC$, $M,N$ and $P$ are midpoints of sides $BC,CA$ and $AB$. Point $K$ lies on segment $NP$ so that $AK$ bisects $\angle BKC$. Lines $MN,BK$ intersects at $E$ and lines $MP,CK$ intersects at $F$. Suppose that $H$ be the foot of perpendicular line from $A$ to $BC$ and $L$ the second intersection of circumcircle of triangles $AKH, HEF$. Prove that $MK,EF$ and $HL$ are concurrent. [i]Proposed by Alireza Dadgarnia[/i]

2012 Online Math Open Problems, 42

In triangle $ABC,$ $\sin \angle A=\frac{4}{5}$ and $\angle A<90^\circ$ Let $D$ be a point outside triangle $ABC$ such that $\angle BAD=\angle DAC$ and $\angle BDC = 90^{\circ}.$ Suppose that $AD=1$ and that $\frac{BD} {CD} = \frac{3}{2}.$ If $AB+AC$ can be expressed in the form $\frac{a\sqrt{b}}{c}$ where $a,b,c$ are pairwise relatively prime integers, find $a+b+c$. [i]Author: Ray Li[/i]

2018 CMIMC Geometry, 7

Let $ABC$ be a triangle with $AB=10$, $AC=11$, and circumradius $6$. Points $D$ and $E$ are located on the circumcircle of $\triangle ABC$ such that $\triangle ADE$ is equilateral. Line segments $\overline{DE}$ and $\overline{BC}$ intersect at $X$. Find $\tfrac{BX}{XC}$.

2020 Mexico National Olympiad, 2

Let $ABC$ be a triangle with incenter $I$. The line $BI$ meets $AC$ at $D$. Let $P$ be a point on $CI$ such that $DI=DP$ ($P\ne I$), $E$ the second intersection point of segment $BC$ with the circumcircle of $ABD$ and $Q$ the second intersection point of line $EP$ with the circumcircle of $AEC$. Prove that $\angle PDQ=90^\circ$. [i]Proposed by Ariel García[/i]

2012 EGMO, 7

Let $ABC$ be an acute-angled triangle with circumcircle $\Gamma$ and orthocentre $H$. Let $K$ be a point of $\Gamma$ on the other side of $BC$ from $A$. Let $L$ be the reflection of $K$ in the line $AB$, and let $M$ be the reflection of $K$ in the line $BC$. Let $E$ be the second point of intersection of $\Gamma $ with the circumcircle of triangle $BLM$. Show that the lines $KH$, $EM$ and $BC$ are concurrent. (The orthocentre of a triangle is the point on all three of its altitudes.) [i]Luxembourg (Pierre Haas)[/i]

2008 USAMO, 4

Let $ \mathcal{P}$ be a convex polygon with $ n$ sides, $ n\ge3$. Any set of $ n \minus{} 3$ diagonals of $ \mathcal{P}$ that do not intersect in the interior of the polygon determine a [i]triangulation[/i] of $ \mathcal{P}$ into $ n \minus{} 2$ triangles. If $ \mathcal{P}$ is regular and there is a triangulation of $ \mathcal{P}$ consisting of only isosceles triangles, find all the possible values of $ n$.

2020 Sharygin Geometry Olympiad, 18

Bisectors $AA_1$, $BB_1$, and $CC_1$ of triangle $ABC$ meet at point $I$. The perpendicular bisector to $BB_1$ meets $AA_1,CC_1$ at points $A_0,C_0$ respectively. Prove that the circumcircles of triangles $A_0IC_0$ and $ABC$ touch.

2019 BMT Spring, 13

Triangle $\vartriangle ABC$ has $AB = 13$, $BC = 14$, and $CA = 15$. $\vartriangle ABC$ has incircle $\gamma$ and circumcircle $\omega$. $\gamma$ has center at $I$. Line $AI$ is extended to hit $\omega$ at $P$. What is the area of quadrilateral $ABPC$?

2000 Junior Balkan MO, 3

A half-circle of diameter $EF$ is placed on the side $BC$ of a triangle $ABC$ and it is tangent to the sides $AB$ and $AC$ in the points $Q$ and $P$ respectively. Prove that the intersection point $K$ between the lines $EP$ and $FQ$ lies on the altitude from $A$ of the triangle $ABC$. [i]Albania[/i]

2020 Iranian Geometry Olympiad, 2

Let $\triangle ABC$ be an acute-angled triangle with its incenter $I$. Suppose that $N$ is the midpoint of the arc $\overarc{BAC}$ of the circumcircle of triangle $\triangle ABC$, and $P$ is a point such that $ABPC$ is a parallelogram.Let $Q$ be the reflection of $A$ over $N$ and $R$ the projection of $A$ on $\overline{QI}$. Show that the line $\overline{AI}$ is tangent to the circumcircle of triangle $\triangle PQR$ [i]Proposed by Patrik Bak - Slovakia[/i]

2014 Harvard-MIT Mathematics Tournament, 30

Let $ABC$ be a triangle with circumcenter $O$, incenter $I$, $\angle B=45^\circ$, and $OI\parallel BC$. Find $\cos\angle C$.

2015 Dutch BxMO/EGMO TST, 4

In a triangle $ABC$ the point $D$ is the intersection of the interior angle bisector of $\angle BAC$ and side $BC$. Let $P$ be the second intersection point of the exterior angle bisector of $\angle BAC$ with the circumcircle of $\angle ABC$. A circle through $A$ and $P$ intersects line segment $BP$ internally in $E$ and line segment $CP$ internally in $F$. Prove that $\angle DEP = \angle DFP$.

2006 Balkan MO, 2

Let $ABC$ be a triangle and $m$ a line which intersects the sides $AB$ and $AC$ at interior points $D$ and $F$, respectively, and intersects the line $BC$ at a point $E$ such that $C$ lies between $B$ and $E$. The parallel lines from the points $A$, $B$, $C$ to the line $m$ intersect the circumcircle of triangle $ABC$ at the points $A_1$, $B_1$ and $C_1$, respectively (apart from $A$, $B$, $C$). Prove that the lines $A_1E$ , $B_1F$ and $C_1D$ pass through the same point. [i]Greece[/i]

2004 Romania Team Selection Test, 16

Three circles $\mathcal{K}_1$, $\mathcal{K}_2$, $\mathcal{K}_3$ of radii $R_1,R_2,R_3$ respectively, pass through the point $O$ and intersect two by two in $A,B,C$. The point $O$ lies inside the triangle $ABC$. Let $A_1,B_1,C_1$ be the intersection points of the lines $AO,BO,CO$ with the sides $BC,CA,AB$ of the triangle $ABC$. Let $ \alpha = \frac {OA_1}{AA_1} $, $ \beta= \frac {OB_1}{BB_1} $ and $ \gamma = \frac {OC_1}{CC_1} $ and let $R$ be the circumradius of the triangle $ABC$. Prove that \[ \alpha R_1 + \beta R_2 + \gamma R_3 \geq R. \]