This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2012 India Regional Mathematical Olympiad, 4

Let $a,b,c$ be positive real numbers such that $abc(a+b+c)=3.$ Prove that we have \[(a+b)(b+c)(c+a)\geq 8.\] Also determine the case of equality.

2010 Indonesia MO, 8

Given an acute triangle $ABC$ with circumcenter $O$ and orthocenter $H$. Let $K$ be a point inside $ABC$ which is not $O$ nor $H$. Point $L$ and $M$ are located outside the triangle $ABC$ such that $AKCL$ and $AKBM$ are parallelogram. At last, let $BL$ and $CM$ intersects at $N$, and let $J$ be the midpoint of $HK$. Show that $KONJ$ is also a parallelogram. [i]Raja Oktovin, Pekanbaru[/i]

2015 Mexico National Olympiad, 1

Let $ABC$ be an acuted-angle triangle and let $H$ be it's orthocenter. Let $PQ$ be a segment through $H$ such that $P$ lies on $AB$ and $Q$ lies on $AC$ and such that $ \angle PHB= \angle CHQ$. Finally, in the circumcircle of $\triangle ABC$, consider $M$ such that $M$ is the mid point of the arc $BC$ that doesn't contain $A$. Prove that $MP=MQ$ Proposed by Eduardo Velasco/Marco Figueroa

2020 Sharygin Geometry Olympiad, 3

Let $ABC$ be a triangle with $\angle C=90^\circ$, and $D$ be a point outside $ABC$, such that $\angle ADC=\angle BAC$. The segments $CD$ and $AB$ meet at point $E$. It is known that the distance from $E$ to $AC$ is equal to the circumradius of triangle $ADE$. Find the angles of triangle $ABC$.

2019 China Team Selection Test, 5

In $\Delta ABC$, $AD \perp BC$ at $D$. $E,F$ lie on line $AB$, such that $BD=BE=BF$. Let $I,J$ be the incenter and $A$-excenter. Prove that there exist two points $P,Q$ on the circumcircle of $\Delta ABC$ , such that $PB=QC$, and $\Delta PEI \sim \Delta QFJ$ .

2019 European Mathematical Cup, 3

In an acute triangle $ABC$ with $|AB| \not= |AC|$, let $I$ be the incenter and $O$ the circumcenter. The incircle is tangent to $\overline{BC}, \overline{CA}$ and $\overline{AB}$ in $D,E$ and $F$ respectively. Prove that if the line parallel to $EF$ passing through $I$, the line parallel to $AO$ passing through $D$ and the altitude from $A$ are concurrent, then the point of concurrence is the orthocenter of the triangle $ABC$. [i]Proposed by Petar Nizié-Nikolac[/i]

2006 Vietnam Team Selection Test, 1

Given an acute angles triangle $ABC$, and $H$ is its orthocentre. The external bisector of the angle $\angle BHC$ meets the sides $AB$ and $AC$ at the points $D$ and $E$ respectively. The internal bisector of the angle $\angle BAC$ meets the circumcircle of the triangle $ADE$ again at the point $K$. Prove that $HK$ is through the midpoint of the side $BC$.

2015 Mexico National Olympiad, 5

Let $I$ be the incenter of an acute-angled triangle $ABC$. Line $AI$ cuts the circumcircle of $BIC$ again at $E$. Let $D$ be the foot of the altitude from $A$ to $BC$, and let $J$ be the reflection of $I$ across $BC$. Show $D$, $J$ and $E$ are collinear.

2016 Sharygin Geometry Olympiad, P14

Let a triangle $ABC$ be given. Consider the circle touching its circumcircle at $A$ and touching externally its incircle at some point $A_1$. Points $B_1$ and $C_1$ are defined similarly. a) Prove that lines $AA_1, BB_1$ and $CC1$ concur. b) Let $A_2$ be the touching point of the incircle with $BC$. Prove that lines $AA_1$ and $AA_2$ are symmetric about the bisector of angle $\angle A$.

2022 Korea National Olympiad, 2

In a scalene triangle $ABC$, let the angle bisector of $A$ meets side $BC$ at $D$. Let $E, F$ be the circumcenter of the triangles $ABD$ and $ADC$, respectively. Suppose that the circumcircles of the triangles $BDE$ and $DCF$ intersect at $P(\neq D)$, and denote by $O, X, Y$ the circumcenters of the triangles $ABC, BDE, DCF$, respectively. Prove that $OP$ and $XY$ are parallel.

2016 Saudi Arabia BMO TST, 2

Let $ABC$ be a triangle and $I$ its incenter. The point $D$ is on segment $BC$ and the circle $\omega$ is tangent to the circumcirle of triangle $ABC$ but is also tangent to $DC, DA$ at $E, F$, respectively. Prove that $E, F$ and $I$ are collinear.

2009 Hong Kong TST, 3

Let $ ABCDE$ be an arbitrary convex pentagon. Suppose that $ BD\cap CE \equal{} A'$, $ CE\cap DA \equal{} B'$, $ DA\cap EB \equal{} C'$, $ EB\cap AC \equal{} D'$ and $ AC\cap BD \equal{} E'$. Suppose also that $ eABD'\cap eAC'E \equal{} A''$, $ eBCE'\cap eBD'A \equal{} B''$, $ eCDA'\cap eCE'B \equal{} C''$, $ eDEB'\cap eDA'C \equal{} D''$, $ eEAC'\cap eEB'D \equal{} E''$. Prove that $ AA'', BB'', CC'', DD'', EE''$ are concurrent. (Here $ l_1\cap l_2 \equal{} P$ means that $ P$ is the intersection of lines $ l_1$ and $ l_2$. Also $ eA_1A_2A_3\cap eB_1B_2B_3 \equal{} Q$ means that $ Q$ is the intersection of the circumcircles of $ \Delta A_1A_2A_3$ and $ \Delta B_1B_2B_3$.)

1999 IMO, 5

Two circles $\Omega_{1}$ and $\Omega_{2}$ touch internally the circle $\Omega$ in M and N and the center of $\Omega_{2}$ is on $\Omega_{1}$. The common chord of the circles $\Omega_{1}$ and $\Omega_{2}$ intersects $\Omega$ in $A$ and $B$. $MA$ and $MB$ intersects $\Omega_{1}$ in $C$ and $D$. Prove that $\Omega_{2}$ is tangent to $CD$.

2015 Sharygin Geometry Olympiad, 8

A perpendicular bisector of side $BC$ of triangle $ABC$ meets lines $AB$ and $AC$ at points $A_B$ and $A_C$ respectively. Let $O_a$ be the circumcenter of triangle $AA_BA_C$. Points $O_b$ and $O_c$ are defined similarly. Prove that the circumcircle of triangle $O_aO_bO_c$ touches the circumcircle of the original triangle.

2002 France Team Selection Test, 1

In an acute-angled triangle $ABC$, $A_1$ and $B_1$ are the feet of the altitudes from $A$ and $B$ respectively, and $M$ is the midpoint of $AB$. a) Prove that $MA_1$ is tangent to the circumcircle of triangle $A_1B_1C$. b) Prove that the circumcircles of triangles $A_1B_1C,BMA_1$, and $AMB_1$ have a common point.

1967 IMO Shortlist, 6

A line $l$ is drawn through the intersection point $H$ of altitudes of acute-angle triangles. Prove that symmetric images $l_a, l_b, l_c$ of $l$ with respect to the sides $BC,CA,AB$ have one point in common, which lies on the circumcircle of $ABC.$

2007 India IMO Training Camp, 1

Let $ ABCD$ be a trapezoid with parallel sides $ AB > CD$. Points $ K$ and $ L$ lie on the line segments $ AB$ and $ CD$, respectively, so that $AK/KB=DL/LC$. Suppose that there are points $ P$ and $ Q$ on the line segment $ KL$ satisfying \[\angle{APB} \equal{} \angle{BCD}\qquad\text{and}\qquad \angle{CQD} \equal{} \angle{ABC}.\] Prove that the points $ P$, $ Q$, $ B$ and $ C$ are concyclic. [i]Proposed by Vyacheslev Yasinskiy, Ukraine[/i]

2000 Harvard-MIT Mathematics Tournament, 4

Let $ABC$ be a triangle and $H$ be its orthocenter. If it is given that $B$ is $(0,0)$, $C$ is $(1,2)$ and $H$ is $(5,0)$, find $A$.

2014 Oral Moscow Geometry Olympiad, 5

Segment $AD$ is the diameter of the circumscribed circle of an acute-angled triangle $ABC$. Through the intersection of the altitudes of this triangle, a straight line was drawn parallel to the side $BC$, which intersects sides $AB$ and $AC$ at points $E$ and $F$, respectively. Prove that the perimeter of the triangle $DEF$ is two times larger than the side $BC$.

2022 JBMO TST - Turkey, 7

In a triangle $\triangle ABC$ with $\angle ABC < \angle BCA$, we define $K$ as the excenter with respect to $A$. The lines $AK$ and $BC$ intersect in a point $D$. Let $E$ be the circumcenter of $\triangle BKC$. Prove that \[\frac{1}{|KA|} = \frac{1}{|KD|} + \frac{1}{|KE|}.\]

2021 Oral Moscow Geometry Olympiad, 4

On the diagonal $AC$ of cyclic quadrilateral $ABCD$ a point $E$ is chosen such that $\angle ABE = \angle CBD$. Points $O,O_1,O_2$ are the circumcircles of triangles $ABC, ABE$ and $CBE$ respectively. Prove that lines $DO,AO_{1}$ and $CO_{2}$ are concurrent.

2022 Taiwan TST Round 3, G

Let $ABC$ be an acute triangle with orthocenter $H$ and circumcircle $\Omega$. Let $M$ be the midpoint of side $BC$. Point $D$ is chosen from the minor arc $BC$ on $\Gamma$ such that $\angle BAD = \angle MAC$. Let $E$ be a point on $\Gamma$ such that $DE$ is perpendicular to $AM$, and $F$ be a point on line $BC$ such that $DF$ is perpendicular to $BC$. Lines $HF$ and $AM$ intersect at point $N$, and point $R$ is the reflection point of $H$ with respect to $N$. Prove that $\angle AER + \angle DFR = 180^\circ$. [i]Proposed by Li4.[/i]

1998 Slovenia National Olympiad, Problem 3

In a right-angled triangle $ABC$ with the hypotenuse $BC$, $D$ is the foot of the altitude from $A$. The line through the incenters of the triangles $ABD$ and $ADC$ intersects the legs of $\triangle ABC$ at $E$ and $F$. Prove that $A$ is the circumcenter of triangle $DEF$.

2003 Federal Math Competition of S&M, Problem 2

Let ABCD be a square inscribed in a circle k and P be an arbitrary point of that circle. Prove that at least one of the numbers PA, PB, PC and PD is not rational.

2013 USAMO, 6

Let $ABC$ be a triangle. Find all points $P$ on segment $BC$ satisfying the following property: If $X$ and $Y$ are the intersections of line $PA$ with the common external tangent lines of the circumcircles of triangles $PAB$ and $PAC$, then \[\left(\frac{PA}{XY}\right)^2+\frac{PB\cdot PC}{AB\cdot AC}=1.\]