This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2007 Iran Team Selection Test, 1

In triangle $ABC$, $M$ is midpoint of $AC$, and $D$ is a point on $BC$ such that $DB=DM$. We know that $2BC^{2}-AC^{2}=AB.AC$. Prove that \[BD.DC=\frac{AC^{2}.AB}{2(AB+AC)}\]

2003 Polish MO Finals, 1

In an acute-angled triangle $ABC, CD$ is the altitude. A line through the midpoint $M$ of side $AB$ meets the rays $CA$ and $CB$ at $K$ and $L$ respectively such that $CK = CL.$ Point $S$ is the circumcenter of the triangle $CKL.$ Prove that $SD = SM.$

2014 Contests, 2

Let $ABC$ be an acute triangle such that $\angle BAC \neq 60^\circ$. Let $D,E$ be points such that $BD,CE$ are tangent to the circumcircle of $ABC$ and $BD=CE=BC$ ($A$ is on one side of line $BC$ and $D,E$ are on the other side). Let $F,G$ be intersections of line $DE$ and lines $AB,AC$. Let $M$ be intersection of $CF$ and $BD$, and $N$ be intersection of $CE$ and $BG$. Prove that $AM=AN$.

2023 JBMO Shortlist, G6

Let $ABC$ be an acute triangle with circumcenter $O$. Let $D$ be the foot of the altitude from $A$ to $BC$ and let $M$ be the midpoint of $OD$. The points $O_b$ and $O_c$ are the circumcenters of triangles $AOC$ and $AOB$, respectively. If $AO=AD$, prove that points $A$, $O_b$, $M$ and $O_c$ are concyclic. [i]Marin Hristov and Bozhidar Dimitrov, Bulgaria[/i]

2015 India Regional MathematicaI Olympiad, 1

In a cyclic quadrilateral $ABCD$, let the diagonals $AC$ and $BD$ intersect at $X$. Let the circumcircles of triangles $AXD$ and $BXC$ intersect again at $Y$ . If $X$ is the incentre of triangle $ABY$ , show that $\angle CAD = 90^o$.

2019 Bosnia and Herzegovina EGMO TST, 3

The circle inscribed in the triangle $ABC$ touches the sides $AB$ and $AC$ at the points $K$ and $L$ , respectively. The angle bisectors from $B$ and $C$ intersect the altitude of the triangle from the vertex $A$ at the points $Q$ and $R$ , respectively. Prove that one of the points of intersection of the circles circumscribed around the triangles $BKQ$ and $CPL$ lies on $BC$.

2010 Sharygin Geometry Olympiad, 6

An arbitrary line passing through vertex $B$ of triangle $ABC$ meets side $AC$ at point $K$ and the circumcircle in point $M$. Find the locus of circumcenters of triangles $AMK$.

2023 Canadian Junior Mathematical Olympiad, 2

An acute triangle is a triangle that has all angles less that $90^{\circ}$ ($90^{\circ}$ is a Right Angle). Let $ABC$ be a right-angled triangle with $\angle ACB =90^{\circ}.$ Let $CD$ be the altitude from $C$ to $AB,$ and let $E$ be the intersection of the angle bisector of $\angle ACD$ with $AD.$ Let $EF$ be the altitude from $E$ to $BC.$ Prove that the circumcircle of $BEF$ passes through the midpoint of $CE.$

2010 Contests, 1

$D, \: E , \: F$ are points on the sides $AB, \: BC, \: CA,$ respectively, of a triangle $ABC$ such that $AD=AF, \: BD=BE,$ and $DE=DF.$ Let $I$ be the incenter of the triangle $ABC,$ and let $K$ be the point of intersection of the line $BI$ and the tangent line through $A$ to the circumcircle of the triangle $ABI.$ Show that $AK=EK$ if $AK=AD.$

2022 Latvia Baltic Way TST, P11

Let $\triangle ABC$ be an acute triangle. Point $D$ is arbitrarily chosen on the side $BC$. Let the circumcircle of the triangle $\triangle ADB$ intersect the segment $AC$ at $M$, and the circumcircle of the triangle $\triangle ADC$ intersect the segment $AB$ at $N$. Prove that the tangents of the circumcircle of the triangle $\triangle AMN$ at $M$ and $N$ intersect at a point that lies on the line $BC$.

2020 Thailand TST, 1

Let $ABC$ be a triangle with circumcircle $\Gamma$. Let $\omega_0$ be a circle tangent to chord $AB$ and arc $ACB$. For each $i = 1, 2$, let $\omega_i$ be a circle tangent to $AB$ at $T_i$ , to $\omega_0$ at $S_i$ , and to arc $ACB$. Suppose $\omega_1 \ne \omega_2$. Prove that there is a circle passing through $S_1, S_2, T_1$, and $T_2$, and tangent to $\Gamma$ if and only if $\angle ACB = 90^o$. .

2007 AMC 10, 11

A circle passes through the three vertices of an isosceles triangle that has two sides of length $ 3$ and a base of length $ 2$. What is the area of this circle? $ \textbf{(A)}\ 2\pi\qquad \textbf{(B)}\ \frac {5}{2}\pi\qquad \textbf{(C)}\ \frac {81}{32}\pi\qquad \textbf{(D)}\ 3\pi\qquad \textbf{(E)}\ \frac {7}{2}\pi$

1992 IMO Longlists, 5

Let $I,H,O$ be the incenter, centroid, and circumcenter of the nonisosceles triangle $ABC$. Prove that $AI \parallel HO$ if and only if $\angle BAC =120^{\circ}$.

2020 ITAMO, 4

Let $ABC$ be an acute-angled triangle with $AB=AC$, let $D$ be the foot of perpendicular, of the point $C$, to the line $AB$ and the point $M$ is the midpoint of $AC$. Finally, the point $E$ is the second intersection of the line $BC$ and the circumcircle of $\triangle CDM$. Prove that the lines $AE, BM$ and $CD$ are concurrents if and only if $CE=CM$.

1971 IMO Longlists, 38

Let $A,B,C$ be three points with integer coordinates in the plane and $K$ a circle with radius $R$ passing through $A,B,C$. Show that $AB\cdot BC\cdot CA\ge 2R$, and if the centre of $K$ is in the origin of the coordinates, show that $AB\cdot BC\cdot CA\ge 4R$.

2012 Dutch BxMO/EGMO TST, 2

Let $\triangle ABC$ be a triangle and let $X$ be a point in the interior of the triangle. The second intersection points of the lines $XA,XB$ and $XC$ with the circumcircle of $\triangle ABC$ are $P,Q$ and $R$. Let $U$ be a point on the ray $XP$ (these are the points on the line $XP$ such that $P$ and $U$ lie on the same side of $X$). The line through $U$ parallel to $AB$ intersects $BQ$ in $V$ . The line through $U$ parallel to $AC$ intersects $CR$ in $W$. Prove that $Q, R, V$ , and $W$ lie on a circle.

2013 Iran MO (3rd Round), 2

Let $ABC$ be a triangle with circumcircle $(O)$. Let $M,N$ be the midpoint of arc $AB,AC$ which does not contain $C,B$ and let $M',N'$ be the point of tangency of incircle of $\triangle ABC$ with $AB,AC$. Suppose that $X,Y$ are foot of perpendicular of $A$ to $MM',NN'$. If $I$ is the incenter of $\triangle ABC$ then prove that quadrilateral $AXIY$ is cyclic if and only if $b+c=2a$.

2002 Tuymaada Olympiad, 3

The points $D$ and $E$ on the circumcircle of an acute triangle $ABC$ are such that $AD=AE = BC$. Let $H$ be the common point of the altitudes of triangle $ABC$. It is known that $AH^{2}=BH^{2}+CH^{2}$. Prove that $H$ lies on the segment $DE$. [i]Proposed by D. Shiryaev[/i]

2013 Sharygin Geometry Olympiad, 4

The diagonals of a convex quadrilateral $ABCD$ meet at point $L$. The orthocenter $H$ of the triangle $LAB$ and the circumcenters $O_1, O_2$, and $O_3$ of the triangles $LBC, LCD$, and $LDA$ were marked. Then the whole configuration except for points $H, O_1, O_2$, and $O_3$ was erased. Restore it using a compass and a ruler.

2020 Yasinsky Geometry Olympiad, 5

It is known about the triangle $ABC$ that $3 BC = CA + AB$. Let the $A$-symmedian of triangle $ABC$ intersect the circumcircle of triangle $ABC$ at point $D$. Prove that $\frac{1}{BD}+ \frac{1}{CD}= \frac{6}{AD}$. (Ercole Suppa, Italy)

1998 India Regional Mathematical Olympiad, 1

Let $ABCD$ be a convex quadrilateral in which $\angle BAC = 50^{\circ}, \angle CAD = 60^{\circ}$and $\angle BDC = 25^{\circ}$. If $E$ is the point of intersection of $AC$ and $BD$, find $\angle AEB$.

2013 Hong kong National Olympiad, 3

Let $ABC$ be a triangle with $CA>BC>AB$. Let $O$ and $H$ be the circumcentre and orthocentre of triangle $ABC$ respectively. Denote by $D$ and $E$ the midpoints of the arcs $AB$ and $AC$ of the circumcircle of triangle $ABC$ not containing the opposite vertices. Let $D'$ be the reflection of $D$ about $AB$ and $E'$ the reflection of $E$ about $AC$. Prove that $O,H,D',E'$ are concylic if and only if $A,D',E'$ are collinear.

2019 Romania Team Selection Test, 1

Let $ I,O $ denote the incenter, respectively, the circumcenter of a triangle $ ABC. $ The $ A\text{-excircle} $ touches the lines $ AB,AC,BC $ at $ K,L, $ respectively, $ M. $ The midpoint of $ KL $ lies on the circumcircle of $ ABC. $ Show that the points $ I,M,O $ are collinear. [i]Павел Кожевников[/i]

2019 Romanian Master of Mathematics Shortlist, original P4

Let there be an equilateral triangle $ABC$ and a point $P$ in its plane such that $AP<BP<CP.$ Suppose that the lengths of segments $AP,BP$ and $CP$ uniquely determine the side of $ABC$. Prove that $P$ lies on the circumcircle of triangle $ABC.$

2010 Contests, 2

Let $ABC$ be a triangle with $ \widehat{BAC}\neq 90^\circ $. Let $M$ be the midpoint of $BC$. We choose a variable point $D$ on $AM$. Let $(O_1)$ and $(O_2)$ be two circle pass through $ D$ and tangent to $BC$ at $B$ and $C$. The line $BA$ and $CA$ intersect $(O_1),(O_2)$ at $ P,Q$ respectively. [b]a)[/b] Prove that tangent line at $P$ on $(O_1)$ and $Q$ on $(O_2)$ must intersect at $S$. [b]b)[/b] Prove that $S$ lies on a fix line.