Found problems: 3882
2010 Contests, 1
Given an acute triangle whose circumcenter is $O$.let $K$ be a point on $BC$,different from its midpoint.$D$ is on the extension of segment $AK,BD$ and $AC$,$CD$and$AB$intersect at $N,M$ respectively.prove that $A,B,D,C$ are concyclic.
Indonesia MO Shortlist - geometry, g6.6
Let $ABC$ be an acute angled triangle with circumcircle $O$. Line $AO$ intersects the circumcircle of triangle $ABC$ again at point $D$. Let $P$ be a point on the side $BC$. Line passing through $P$ perpendicular to $AP$ intersects lines $DB$ and $DC$ at $E$ and $F$ respectively . Line passing through $D$ perpendicular to $BC$ intersects $EF$ at point $Q$. Prove that $EQ = FQ$ if and only if $BP = CP$.
2016 Moldova Team Selection Test, 7
Let $\Omega$ and $O$ be the circumcircle of acute triangle $ABC$ and its center, respectively. $M\ne O$ is an arbitrary point in the interior of $ABC$ such that $AM$, $BM$, and $CM$ intersect $\Omega$ at $A_{1}$, $B_{1}$, and $C_{1}$, respectiuvely. Let $A_{2}$, $B_{2}$, and $C_{2}$ be the circumcenters of $MBC$, $MCA$, and $MAB$, respectively. It is to be proven that $A_{1}A_{2}$, $B_{1}B_{2}$, $C_{1}C{2}$ concur.
2011 All-Russian Olympiad, 2
On side $BC$ of parallelogram $ABCD$ ($A$ is acute) lies point $T$ so that triangle $ATD$ is an acute triangle. Let $O_1$, $O_2$, and $O_3$ be the circumcenters of triangles $ABT$, $DAT$, and $CDT$ respectively. Prove that the orthocenter of triangle $O_1O_2O_3$ lies on line $AD$.
2016 Poland - Second Round, 2
In acute triangle $ABC$ bisector of angle $BAC$ intersects side $BC$ in point $D$. Bisector of line segment $AD$ intersects circumcircle of triangle $ABC$ in points $E$ and $F$. Show that circumcircle of triangle $DEF$ is tangent to line $BC$.
2012 Germany Team Selection Test, 2
Let $\Gamma$ be the circumcircle of isosceles triangle $ABC$ with vertex $C$. An arbitrary point $M$ is chosen on the segment $BC$ and point $N$ lies on the ray $AM$ with $M$ between $A,N$ such that $AN=AC$. The circumcircle of $CMN$ cuts $\Gamma$ in $P$ other than $C$ and $AB,CP$ intersect at $Q$. Prove that $\angle BMQ = \angle QMN.$
2012 Korea National Olympiad, 1
Let $ ABC $ be an obtuse triangle with $ \angle A > 90^{\circ} $. Let circle $ O $ be the circumcircle of $ ABC $. $ D $ is a point lying on segment $ AB $ such that $ AD = AC $. Let $ AK $ be the diameter of circle $ O $. Two lines $ AK $ and $ CD $ meet at $ L $. A circle passing through $ D, K, L $ meets with circle $ O $ at $ P ( \ne K ) $ . Given that $ AK = 2, \angle BCD = \angle BAP = 10^{\circ} $, prove that $ DP = \sin ( \frac{ \angle A}{2} )$.
2001 Hungary-Israel Binational, 5
In a triangle $ABC$ , $B_{1}$ and $C_{1}$ are the midpoints of $AC$ and $AB$ respectively, and $I$ is the incenter. The lines $B_{1}I$ and $C_{1}I$ meet $AB$ and $AC$ respectively at $C_{2}$ and $B_{2}$ . If the areas of $\Delta ABC$ and $\Delta AB_{2}C_{2}$ are equal, find $\angle{BAC}$ .
Cono Sur Shortlist - geometry, 2012.G3
Let $ABC$ be a triangle, and $M$, $N$, and $P$ be the midpoints of $AB$, $BC$, and $CA$ respectively, such that $MBNP$ is a parallelogram. Let $R$ and $S$ be the points in which the line $MN$ intersects the circumcircle of $ABC$. Prove that $AC$ is tangent to the circumcircle of triangle $RPS$.
2018-IMOC, G3
Given an acute $\vartriangle ABC$ whose orthocenter is denoted by $H$. A line $\ell$ passes $H$ and intersects $AB,AC$ at $P ,Q$ such that $H$ is the mid-point of $P,Q$. Assume the other intersection of the circumcircle of $\vartriangle ABC$ with the circumcircle of $\vartriangle APQ$ is $X$. Let $C'$ is the symmetric point of $C$ with respect to $X$ and $Y$ is the another intersection of the circumcircle of $\vartriangle ABC$ and $AO$, where O is the circumcenter of $\vartriangle APQ$. Show that $CY$ is tangent to circumcircle of $\vartriangle BCC'$.
[img]https://1.bp.blogspot.com/-itG6m1ipAfE/XndLDUtSf7I/AAAAAAAALfc/iZahX6yNItItRSXkDYNofR5hKApyFH84gCK4BGAYYCw/s1600/2018%2Bimoc%2Bg3.png[/img]
2010 Iran MO (3rd Round), 1
1. In a triangle $ABC$, $O$ is the circumcenter and $I$ is the incenter. $X$ is the reflection of $I$ to $O$. $A_1$ is foot of the perpendicular from $X$ to $BC$. $B_1$ and $C_1$ are defined similarly. prove that $AA_1$,$BB_1$ and $CC_1$ are concurrent.(12 points)
2019 Greece Team Selection Test, 2
Let a triangle $ABC$ inscribed in a circle $\Gamma$ with center $O$. Let $I$ the incenter of triangle $ABC$ and $D, E, F$ the contact points of the incircle with sides $BC, AC, AB$ of triangle $ABC$ respectively . Let also $S$ the foot of the perpendicular line from $D$ to the line $EF$.Prove that line $SI$ passes from the antidiametric point $N$ of $A$ in the circle $\Gamma$.( $AN$ is a diametre of the circle $\Gamma$).
1980 Bundeswettbewerb Mathematik, 3
In a triangle $ABC$, points $P, Q$ and $ R$ distinct from the vertices of the triangle are chosen on sides $AB, BC$ and $CA$, respectively. The circumcircles of the triangles $APR$, $BPQ$, and $CQR$ are drawn. Prove that the centers of these circles are the vertices of a triangle similar to triangle $ABC$.
2000 Turkey Team Selection Test, 2
Points $M,\ N,\ K,\ L$ are taken on the sides $AB,\ BC,\ CD,\ DA$ of a rhombus
$ABCD,$ respectively, in such a way that $MN\parallel LK$ and the distance between $MN$ and $KL$ is equal to the height of $ABCD.$ Show that the circumcircles of the triangles $ALM$ and $NCK$ intersect each other, while those of $LDK$ and $MBN$ do not.
2006 Romania Team Selection Test, 2
Let $A$ be point in the exterior of the circle $\mathcal C$. Two lines passing through $A$ intersect the circle $\mathcal C$ in points $B$ and $C$ (with $B$ between $A$ and $C$) respectively in $D$ and $E$ (with $D$ between $A$ and $E$). The parallel from $D$ to $BC$ intersects the second time the circle $\mathcal C$ in $F$. Let $G$ be the second point of intersection between the circle $\mathcal C$ and the line $AF$ and $M$ the point in which the lines $AB$ and $EG$ intersect. Prove that
\[ \frac 1{AM} = \frac 1{AB} + \frac 1{AC}. \]
2020 Abels Math Contest (Norwegian MO) Final, 4b
The triangle $ABC$ has a right angle at $A$. The centre of the circumcircle is called $O$, and the base point of the normal from $O$ to $AC$ is called $D$. The point $E$ lies on $AO$ with $AE = AD$. The angle bisector of $\angle CAO$ meets $CE$ in $Q$. The lines $BE$ and $OQ$ intersect in $F$. Show that the lines $CF$ and $OE$ are parallel.
Swiss NMO - geometry, 2010.9
Let $ k$ and $ k'$ two concentric circles centered at $ O$, with $ k'$ being larger than $ k$. A line through $ O$ intersects $ k$ at $ A$ and $ k'$ at $ B$ such that $ O$ seperates $ A$ and $ B$. Another line through $ O$ intersects $ k$ at $ E$ and $ k'$ at $ F$ such that $ E$ separates $ O$ and $ F$.
Show that the circumcircle of $ \triangle{OAE}$ and the circles with diametres $ AB$ and $ EF$ have a common point.
2012 France Team Selection Test, 2
Let $ABC$ be an acute-angled triangle with $AB\not= AC$. Let $\Gamma$ be the circumcircle, $H$ the orthocentre and $O$ the centre of $\Gamma$. $M$ is the midpoint of $BC$. The line $AM$ meets $\Gamma$ again at $N$ and the circle with diameter $AM$ crosses $\Gamma$ again at $P$. Prove that the lines $AP,BC,OH$ are concurrent if and only if $AH=HN$.
2014 Taiwan TST Round 2, 6
Let $P$ be a point inside triangle $ABC$, and suppose lines $AP$, $BP$, $CP$ meet the circumcircle again at $T$, $S$, $R$ (here $T \neq A$, $S \neq B$, $R \neq C$). Let $U$ be any point in the interior of $PT$. A line through $U$ parallel to $AB$ meets $CR$ at $W$, and the line through $U$ parallel to $AC$ meets $BS$ again at $V$. Finally, the line through $B$ parallel to $CP$ and the line through $C$ parallel to $BP$ intersect at point $Q$. Given that $RS$ and $VW$ are parallel, prove that $\angle CAP = \angle BAQ$.
2002 France Team Selection Test, 2
Let $ ABC$ be a non-equilateral triangle. Denote by $ I$ the incenter and by $ O$ the circumcenter of the triangle $ ABC$. Prove that $ \angle AIO\leq\frac{\pi}{2}$ holds if and only if $ 2\cdot BC\leq AB\plus{}AC$.
1981 IMO Shortlist, 17
Three circles of equal radius have a common point $O$ and lie inside a given triangle. Each circle touches a pair of sides of the triangle. Prove that the incenter and the circumcenter of the triangle are collinear with the point $O$.
2012 IMO Shortlist, G3
In an acute triangle $ABC$ the points $D,E$ and $F$ are the feet of the altitudes through $A,B$ and $C$ respectively. The incenters of the triangles $AEF$ and $BDF$ are $I_1$ and $I_2$ respectively; the circumcenters of the triangles $ACI_1$ and $BCI_2$ are $O_1$ and $O_2$ respectively. Prove that $I_1I_2$ and $O_1O_2$ are parallel.
2013 Oral Moscow Geometry Olympiad, 5
In triangle $ABC, \angle C= 60^o, \angle A= 45^o$. Let $M$ be the midpoint of $BC, H$ be the orthocenter of triangle $ABC$. Prove that line $MH$ passes through the midpoint of arc $AB$ of the circumcircle of triangle $ABC$.
1995 Moldova Team Selection Test, 3
Let $ABC$ be a triangle with the medians $AA_1, BB_1$ and $CC_1{}$. Prove that if the circumcircles of $BCB_1, CAC_1$ and $ABA_1$ are congruent then $ABC$ is equilateral.
2001 Junior Balkan MO, 2
Let $ABC$ be a triangle with $\angle C = 90^\circ$ and $CA \neq CB$. Let $CH$ be an altitude and $CL$ be an interior angle bisector. Show that for $X \neq C$ on the line $CL$, we have $\angle XAC \neq \angle XBC$. Also show that for $Y \neq C$ on the line $CH$ we have $\angle YAC \neq \angle YBC$.
[i]Bulgaria[/i]