This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2007 Baltic Way, 11

In triangle $ABC$ let $AD,BE$ and $CF$ be the altitudes. Let the points $P,Q,R$ and $S$ fulfil the following requirements: i) $P$ is the circumcentre of triangle $ABC$. ii) All the segments $PQ,QR$ and $RS$ are equal to the circumradius of triangle $ABC$. iii) The oriented segment $PQ$ has the same direction as the oriented segment $AD$. Similarly, $QR$ has the same direction as $BE$, and $Rs$ has the same direction as $CF$. Prove that $S$ is the incentre of triangle $ABC$.

2010 Serbia National Math Olympiad, 1

Let $O$ be the circumcenter of triangle $ABC$. A line through $O$ intersects the sides $CA$ and $CB$ at points $D$ and $E$ respectively, and meets the circumcircle of $ABO$ again at point $P \neq O$ inside the triangle. A point $Q$ on side $AB$ is such that $\frac{AQ}{QB}=\frac{DP}{PE}$. Prove that $\angle APQ = 2\angle CAP$. [i]Proposed by Dusan Djukic[/i]

2014 District Olympiad, 2

Let $ABC$ be a triangle and let the points $D\in BC, E\in AC, F\in AB$, such that \[ \frac{DB}{DC}=\frac{EC}{EA}=\frac{FA}{FB} \] The half-lines $AD, BE,$ and $CF$ intersect the circumcircle of $ABC$ at points $M,N$ and $P$. Prove that the triangles $ABC$ and $MNP$ share the same centroid if and only if the areas of the triangles $BMC, CNA$ and $APB$ are equal.

2018 Harvard-MIT Mathematics Tournament, 8

Let $ABC$ be an equilateral triangle with side length $8.$ Let $X$ be on side $AB$ so that $AX=5$ and $Y$ be on side $AC$ so that $AY=3.$ Let $Z$ be on side $BC$ so that $AZ,BY,CX$ are concurrent. Let $ZX,ZY$ intersect the circumcircle of $AXY$ again at $P,Q$ respectively. Let $XQ$ and $YP$ intersect at $K.$ Compute $KX\cdot KQ.$

2014 India IMO Training Camp, 1

In a triangle $ABC$, let $I$ be its incenter; $Q$ the point at which the incircle touches the line $AC$; $E$ the midpoint of $AC$ and $K$ the orthocenter of triangle $BIC$. Prove that the line $KQ$ is perpendicular to the line $IE$.

2014 Finnish National High School Mathematics, 2

The center of the circumcircle of the acute triangle $ABC$ is $M$, and the circumcircle of $ABM$ meets $BC$ and $AC$ at $P$ and $Q$ ($P\ne B$). Show that the extension of the line segment $CM$ is perpendicular to $PQ$.

1998 Hungary-Israel Binational, 2

A triangle ABC is inscribed in a circle with center $ O$ and radius $ R$. If the inradii of the triangles $ OBC, OCA, OAB$ are $ r_{1}, r_{2}, r_{3}$ , respectively, prove that $ \frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}\geq\frac{4\sqrt{3}+6}{R}.$

2014 Harvard-MIT Mathematics Tournament, 10

Let $ABC$ be a triangle with $AB = 13$, $BC = 14$, and $CA = 15$. Let $\Gamma$ be the circumcircle of $ABC$, let $O$ be its circumcenter, and let $M$ be the midpoint of minor arc $BC$. Circle $\omega_1$ is internally tangent to $\Gamma$ at $A$, and circle $\omega_2$, centered at $M$, is externally tangent to $\omega_1$ at a point $T$. Ray $AT$ meets segment $BC$ at point $S$, such that $BS - CS = \dfrac4{15}$. Find the radius of $\omega_2$

2012 Pre - Vietnam Mathematical Olympiad, 3

Let $ABC$ be a triangle with height $AH$. $P$ lies on the circle over 3 midpoint of $AB,BC,CA$ ($P \notin BC$). Prove that the line connect 2 center of $(PBH)$ and $(PCH)$ go through a fixed point. (where $(XYZ)$ be a circumscribed circle of triangle $XYZ$)

2015 Belarus Team Selection Test, 2

In a cyclic quadrilateral $ABCD$, the extensions of sides $AB$ and $CD$ meet at point $P$, and the extensions of sides $AD$ and $BC$ meet at point $Q$. Prove that the distance between the orthocenters of triangles $APD$ and $AQB$ is equal to the distance between the orthocenters of triangles $CQD$ and $BPC$.

Indonesia MO Shortlist - geometry, g3

Given $ABC$ triangle with incircle $L_1$ and circumcircle $L_2$. If points $X, Y, Z$ lie on $L_2$, such that $XY, XZ$ are tangent to $L_1$, then prove that $YZ$ is also tangent to $L_1$.

2014 Kazakhstan National Olympiad, 3

The triangle $ABC$ is inscribed in a circle $w_1$. Inscribed in a triangle circle touchs the sides $BC$ in a point $N$. $w_2$ — the circle inscribed in a segment $BAC$ circle of $w_1$, and passing through a point $N$. Let points $O$ and $J$ — the centers of circles $w_2$ and an extra inscribed circle (touching side $BC$) respectively. Prove, that lines $AO$ and $JN$ are parallel.

1962 IMO Shortlist, 5

On the circle $K$ there are given three distinct points $A,B,C$. Construct (using only a straightedge and a compass) a fourth point $D$ on $K$ such that a circle can be inscribed in the quadrilateral thus obtained.

2020 Cono Sur Olympiad, 3

Let $ABC$ be an acute triangle such that $AC<BC$ and $\omega$ its circumcircle. $M$ is the midpoint of $BC$. Points $F$ and $E$ are chosen in $AB$ and $BC$, respectively, such that $AC=CF$ and $EB=EF$. The line $AM$ intersects $\omega$ in $D\neq A$. The line $DE$ intersects the line $FM$ in $G$. Prove that $G$ lies on $\omega$.

2018 Korea - Final Round, 2

Triangle $ABC$ satisfies $\angle ABC < \angle BCA < \angle CAB < 90^{\circ}$. $O$ is the circumcenter of triangle $ABC$, and $K$ is the reflection of $O$ in $BC$. $D,E$ is the foot of perpendicular line from $K$ to line $AB$, $AC$, respectively. Line $DE$ meets $BC$ at $P$, and a circle with diameter $AK$ meets the circumcircle of triangle $ABC$ at $Q(\neq A)$. If $PQ$ cuts the perpendicular bisector of $BC$ at $S$, then prove that $S$ lies on the circle with diameter $AK$.

2008 India Regional Mathematical Olympiad, 1

Let $ ABC$ be an acute angled triangle; let $ D,F$ be the midpoints of $ BC,AB$ respectively. Let the perpendicular from $ F$ to $ AC$ and the perpendicular from $ B$ ti $ BC$ meet in $ N$: Prove that $ ND$ is the circumradius of $ ABC$. [15 points out of 100 for the 6 problems]

2009 IMO Shortlist, 2

Let $ ABC$ be a triangle with circumcentre $ O$. The points $ P$ and $ Q$ are interior points of the sides $ CA$ and $ AB$ respectively. Let $ K,L$ and $ M$ be the midpoints of the segments $ BP,CQ$ and $ PQ$. respectively, and let $ \Gamma$ be the circle passing through $ K,L$ and $ M$. Suppose that the line $ PQ$ is tangent to the circle $ \Gamma$. Prove that $ OP \equal{} OQ.$ [i]Proposed by Sergei Berlov, Russia [/i]

2005 Vietnam Team Selection Test, 1

Let $(I),(O)$ be the incircle, and, respectiely, circumcircle of $ABC$. $(I)$ touches $BC,CA,AB$ in $D,E,F$ respectively. We are also given three circles $\omega_a,\omega_b,\omega_c$, tangent to $(I),(O)$ in $D,K$ (for $\omega_a$), $E,M$ (for $\omega_b$), and $F,N$ (for $\omega_c$). [b]a)[/b] Show that $DK,EM,FN$ are concurrent in a point $P$; [b]b)[/b] Show that the orthocenter of $DEF$ lies on $OP$.

1989 Austrian-Polish Competition, 8

$ABC$ is an acute-angled triangle and $P$ a point inside or on the boundary. The feet of the perpendiculars from $P$ to $BC, CA, AB$ are $A', B', C'$ respectively. Show that if $ABC$ is equilateral, then $\frac{AC'+BA'+CB'}{PA'+PB'+PC'}$ is the same for all positions of $P$, but that for any other triangle it is not.

1986 India National Olympiad, 6

Construct a quadrilateral which is not a parallelogram, in which a pair of opposite angles and a pair of opposite sides are equal.

2022 Bolivia IMO TST, P3

On $\triangle ABC$, let $M$ the midpoint of $AB$ and $N$ the midpoint of $CM$. Let $X$ a point such that $\angle XMC=\angle MBC$ and $\angle XCM=\angle MCB$ with $X,B$ in opposite sides of line $CM$. Let $\Omega$ the circumcircle of triangle $\triangle AMX$ [b]a)[/b] Show that $CM$ is tangent to $\Omega$ [b]b)[/b] Show that the lines $NX$ and $AC$ meet at $\Omega$

2019 Korea Winter Program Practice Test, 2

$\omega_1,\omega_2$ are orthogonal circles, and their intersections are $P,P'$. Another circle $\omega_3$ meets $\omega_1$ at $Q,Q'$, and $\omega_2$ at $R,R'$. (The points $Q,R,Q',R'$ are in clockwise order.) Suppose $P'R$ and $PR'$ meet at $S$, and let $T$ be the circumcenter of $\triangle PQR$. Prove that $T,Q,S$ are collinear if and only if $O_1,S,O_3$ are collinear. ($O_i$ is the center of $\omega_i$ for $i=1,2,3$.)

2018 Hanoi Open Mathematics Competitions, 12

Let $ABC$ be an acute triangle with $AB < AC$, and let $BE$ and $CF$ be the altitudes. Let the median $AM$ intersect $BE$ at point $P$, and let line $CP$ intersect $AB$ at point $D$ (see Figure 2). Prove that $DE \parallel BC$, and $AC$ is tangent to the circumcircle of $\vartriangle DEF$. [img]https://cdn.artofproblemsolving.com/attachments/f/7/bbad9f6019a77c6aa46c3a821857f06233cb93.png[/img]

2014 Contests, 1

Let $ABC$ be a triangle with $AB>AC$. Let $D$ be the foot of the internal angle bisector of $A$. Points $F$ and $E$ are on $AC,AB$ respectively such that $B,C,F,E$ are concyclic. Prove that the circumcentre of $DEF$ is the incentre of $ABC$ if and only if $BE+CF=BC$.

2012 Turkey Team Selection Test, 1

In a triangle $ABC,$ incircle touches the sides $BC, CA, AB$ at $D, E, F,$ respectively. A circle $\omega$ passing through $A$ and tangent to line $BC$ at $D$ intersects the line segments $BF$ and $CE$ at $K$ and $L,$ respectively. The line passing through $E$ and parallel to $DL$ intersects the line passing through $F$ and parallel to $DK$ at $P.$ If $R_1, R_2, R_3, R_4$ denotes the circumradius of the triangles $AFD, AED, FPD, EPD,$ respectively, prove that $R_1R_4=R_2R_3.$