This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2012 Romania Team Selection Test, 2

Let $ABCD$ be a convex circumscribed quadrilateral such that $\angle ABC+\angle ADC<180^{\circ}$ and $\angle ABD+\angle ACB=\angle ACD+\angle ADB$. Prove that one of the diagonals of quadrilateral $ABCD$ passes through the other diagonals midpoint.

2005 Georgia Team Selection Test, 5

Let $ ABCD$ be a convex quadrilateral. Points $ P,Q$ and $ R$ are the feets of the perpendiculars from point $ D$ to lines $ BC, CA$ and $ AB$, respectively. Prove that $ PQ\equal{}QR$ if and only if the bisectors of the angles $ ABC$ and $ ADC$ meet on segment $ AC$.

2007 Indonesia MO, 7

Points $ A,B,C,D$ are on circle $ S$, such that $ AB$ is the diameter of $ S$, but $ CD$ is not the diameter. Given also that $ C$ and $ D$ are on different sides of $ AB$. The tangents of $ S$ at $ C$ and $ D$ intersect at $ P$. Points $ Q$ and $ R$ are the intersections of line $ AC$ with line $ BD$ and line $ AD$ with line $ BC$, respectively. (a) Prove that $ P$, $ Q$, and $ R$ are collinear. (b) Prove that $ QR$ is perpendicular to line $ AB$.

2017 Saudi Arabia JBMO TST, 4

Let $ABC$ be an acute, non isosceles triangle and $(O)$ be its circumcircle (with center $O$). Denote by $G$ the centroid of the triangle $ABC$, by $H$ the foot of the altitude from $A$ onto the side $BC$ and by $I$ the midpoint of $AH$. The line $IG$ intersects $BC$ at $K$. 1. Prove that $CK = BH$. 2. The ray $(GH$ intersects $(O)$ at L. Denote by $T$ the circumcenter of the triangle $BHL$. Prove that $AO$ and $BT$ intersect on the circle $(O)$.

2011 Akdeniz University MO, 5

Let $ABC$ be an acute-angled triangle with $H$ orthocenter, $O$ circumcenter. $[AH]$'s perpendicular bisector intersects with $[AB]$ and $[AC]$ at $D$ and $E$ respectively. Prove that $$\angle ADE =\angle BDO$$

2004 Romania Team Selection Test, 11

Let $I$ be the incenter of the non-isosceles triangle $ABC$ and let $A',B',C'$ be the tangency points of the incircle with the sides $BC,CA,AB$ respectively. The lines $AA'$ and $BB'$ intersect in $P$, the lines $AC$ and $A'C'$ in $M$ and the lines $B'C'$ and $BC$ intersect in $N$. Prove that the lines $IP$ and $MN$ are perpendicular. [i]Alternative formulation.[/i] The incircle of a non-isosceles triangle $ABC$ has center $I$ and touches the sides $BC$, $CA$ and $AB$ in $A^{\prime}$, $B^{\prime}$ and $C^{\prime}$, respectively. The lines $AA^{\prime}$ and $BB^{\prime}$ intersect in $P$, the lines $AC$ and $A^{\prime}C^{\prime}$ intersect in $M$, and the lines $BC$ and $B^{\prime}C^{\prime}$ intersect in $N$. Prove that the lines $IP$ and $MN$ are perpendicular.

2002 Tuymaada Olympiad, 3

A circle having common centre with the circumcircle of triangle $ABC$ meets the sides of the triangle at six points forming convex hexagon $A_{1}A_{2}B_{1}B_{2}C_{1}C_{2}$ ($A_{1}$ and $A_{2}$ lie on $BC$, $B_{1}$ and $B_{2}$ lie on $AC$, $C_{1}$ and $C_{2}$ lie on $AB$). If $A_{1}B_{1}$ is parallel to the bisector of angle $B$, prove that $A_{2}C_{2}$ is parallel to the bisector of angle $C$. [i]Proposed by S. Berlov[/i]

VMEO IV 2015, 10.2

Given triangle $ABC$ and $P,Q$ are two isogonal conjugate points in $\triangle ABC$. $AP,AQ$ intersects $(QBC)$ and $(PBC)$ at $M,N$, respectively ( $M,N$ be inside triangle $ABC$) 1. Prove that $M,N,P,Q$ locate on a circle - named $(I)$ 2. $MN\cap PQ$ at $J$. Prove that $IJ$ passed through a fixed line when $P,Q$ changed

2013 Online Math Open Problems, 21

Let $ABC$ be a triangle with $AB = 5$, $AC = 8$, and $BC = 7$. Let $D$ be on side $AC$ such that $AD = 5$ and $CD = 3$. Let $I$ be the incenter of triangle $ABC$ and $E$ be the intersection of the perpendicular bisectors of $\overline{ID}$ and $\overline{BC}$. Suppose $DE = \frac{a\sqrt{b}}{c}$ where $a$ and $c$ are relatively prime positive integers, and $b$ is a positive integer not divisible by the square of any prime. Find $a+b+c$. [i]Proposed by Ray Li[/i]

2009 Rioplatense Mathematical Olympiad, Level 3, 2

Let $A$, $B$, $C$, $D$, $E$, $F$, $G$, $H$, $I$ be nine points in space such that $ABCDE$, $ABFGH$, and $GFCDI$ are each regular pentagons with side length $1$. Determine the lengths of the sides of triangle $EHI$.

2013 Czech-Polish-Slovak Match, 3

Let ${ABC}$ be a triangle inscribed in a circle. Point ${P}$ is the center of the arc ${BAC}$. The circle with the diameter ${CP}$ intersects the angle bisector of angle ${\angle BAC}$ at points ${K, L}$ ${(|AK| <|AL|)}$. Point ${M}$ is the reflection of ${L}$ with respect to line ${BC}$. Prove that the circumcircle of the triangle ${BKM}$ passes through the center of the segment ${BC}$ .

2021 Dutch IMO TST, 3

Let $ABC$ be an acute-angled and non-isosceles triangle with orthocenter $H$. Let $O$ be the center of the circumscribed circle of triangle $ABC$ and let $K$ be center of the circumscribed circle of triangle $AHO$. Prove that the reflection of $K$ wrt $OH$ lies on $BC$.

2018 AMC 12/AHSME, 21

In $\triangle{ABC}$ with side lengths $AB = 13$, $AC = 12$, and $BC = 5$, let $O$ and $I$ denote the circumcenter and incenter, respectively. A circle with center $M$ is tangent to the legs $AC$ and $BC$ and to the circumcircle of $\triangle{ABC}$. What is the area of $\triangle{MOI}$? $\textbf{(A)}\ 5/2\qquad\textbf{(B)}\ 11/4\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 13/4\qquad\textbf{(E)}\ 7/2$

2014 ELMO Shortlist, 10

We are given triangles $ABC$ and $DEF$ such that $D\in BC, E\in CA, F\in AB$, $AD\perp EF, BE\perp FD, CF\perp DE$. Let the circumcenter of $DEF$ be $O$, and let the circumcircle of $DEF$ intersect $BC,CA,AB$ again at $R,S,T$ respectively. Prove that the perpendiculars to $BC,CA,AB$ through $D,E,F$ respectively intersect at a point $X$, and the lines $AR,BS,CT$ intersect at a point $Y$, such that $O,X,Y$ are collinear. [i]Proposed by Sammy Luo[/i]

2010 Greece JBMO TST, 3

Given an acute and scalene triangle $ABC$ with $AB<AC$ and random line $(e)$ that passes throuh the center of the circumscribed circles $c(O,R)$. Line $(e)$, intersects sides $BC,AC,AB$ at points $A_1,B_1,C_1$ respectively (point $C_1$ lies on the extension of $AB$ towards $B$). Perpendicular from $A$ on line $(e)$ and $AA_1$ intersect circumscribed circle $c(O,R)$ at points $M$ and $A_2$ respectively. Prove that a) points $O,A_1,A_2, M$ are consyclic b) if $(c_2)$ is the circumcircle of triangle $(OBC_1)$ and $(c_3)$ is the circumcircle of triangle $(OCB_1)$, then circles $(c_1),(c_2)$ and $(c_3)$ have a common chord

2018 Iranian Geometry Olympiad, 5

Suppose that $ABCD$ is a parallelogram such that $\angle DAC = 90^o$. Let $H$ be the foot of perpendicular from $A$ to $DC$, also let $P$ be a point along the line $AC$ such that the line $PD$ is tangent to the circumcircle of the triangle $ABD$. Prove that $\angle PBA = \angle DBH$. Proposed by Iman Maghsoudi

2003 Rioplatense Mathematical Olympiad, Level 3, 2

Triangle $ABC$ is inscribed in the circle $\Gamma$. Let $\Gamma_a$ denote the circle internally tangent to $\Gamma$ and also tangent to sides $AB$ and $AC$. Let $A'$ denote the point of tangency of $\Gamma$ and $\Gamma_a$. Define $B'$ and $C'$ similarly. Prove that $AA'$, $BB'$ and $CC'$ are concurrent.

2006 Bulgaria Team Selection Test, 1

[b]Problem 1.[/b] Points $D$ and $E$ are chosen on the sides $AB$ and $AC$, respectively, of a triangle $\triangle ABC$ such that $DE\parallel BC$. The circumcircle $k$ of triangle $\triangle ADE$ intersects the lines $BE$ and $CD$ at the points $M$ and $N$ (different from $E$ and $D$). The lines $AM$ and $AN$ intersect the side $BC$ at points $P$ and $Q$ such that $BC=2\cdot PQ$ and the point $P$ lies between $B$ and $Q$. Prove that the circle $k$ passes through the point of intersection of the side $BC$ and the angle bisector of $\angle BAC$. [i]Nikolai Nikolov[/i]

2023 Kurschak Competition, 3

Given is a convex cyclic pentagon $ABCDE$ and a point $P$ inside it, such that $AB=AE=AP$ and $BC=CE$. The lines $AD$ and $BE$ intersect in $Q$. Points $R$ and $S$ are on segments $CP$ and $BP$ such that $DR=QR$ and $SR||BC$. Show that the circumcircles of $BEP$ and $PQS$ are tangent to each other.

2011 Postal Coaching, 5

Let $P$ be a point inside a triangle $ABC$ such that \[\angle P AB = \angle P BC = \angle P CA\] Suppose $AP, BP, CP$ meet the circumcircles of triangles $P BC, P CA, P AB$ at $X, Y, Z$ respectively $(\neq P)$ . Prove that \[[XBC] + [Y CA] + [ZAB] \ge 3[ABC]\]

2019 Latvia Baltic Way TST, 11

Let $A_1A_2...A_{2018}$ be regular $2018$-gon. Radius of it's circumcircle is $R$. Prove that: $$A_1A_{1008}-A_1A_{1006}+A_1A_{1004}-A_1A_{1002} + ... + A_1A_4 -A_1A_2=R$$

Cono Sur Shortlist - geometry, 2018.G2.5

Let $ABC$ be an acute-angled triangle with $\angle BAC = 60^{\circ}$ and with incenter $I$ and circumcenter $O$. Let $H$ be the point diametrically opposite(antipode) to $O$ in the circumcircle of $\triangle BOC$. Prove that $IH=BI+IC$.

2013 Harvard-MIT Mathematics Tournament, 6

Let triangle $ABC$ satisfy $2BC = AB+AC$ and have incenter $I$ and circumcircle $\omega$. Let $D$ be the intersection of $AI$ and $\omega$ (with $A, D$ distinct). Prove that $I$ is the midpoint of $AD$.

2002 IberoAmerican, 3

Let $P$ be a point in the interior of the equilateral triangle $\triangle ABC$ such that $\sphericalangle{APC}=120^\circ$. Let $M$ be the intersection of $CP$ with $AB$, and $N$ the intersection of $AP$ and $BC$. Find the locus of the circumcentre of the triangle $MBN$ as $P$ varies.

2013 ELMO Shortlist, 11

Let $\triangle ABC$ be a nondegenerate isosceles triangle with $AB=AC$, and let $D, E, F$ be the midpoints of $BC, CA, AB$ respectively. $BE$ intersects the circumcircle of $\triangle ABC$ again at $G$, and $H$ is the midpoint of minor arc $BC$. $CF\cap DG=I, BI\cap AC=J$. Prove that $\angle BJH=\angle ADG$ if and only if $\angle BID=\angle GBC$. [i]Proposed by David Stoner[/i]