Found problems: 3882
2012 Irish Math Olympiad, 2
$A,B,C$ and $D$ are four points in that order on the circumference of a circle $K$. $AB$ is perpendicular to $BC$ and $BC$ is perpendicular to $CD$. $X$ is a point on the circumference of the circle between $A$ and $D$. $AX$ extended meets $CD$ extended at $E$ and $DX$ extended meets $BA$ extended at $F$. Prove that the circumcircle of triangle $AXF$ is tangent to the circumcircle of triangle $DXE$ and that the common tangent line passes through the center of the circle $K$.
1997 Iran MO (3rd Round), 2
In an acute triangle $ABC$, points $D,E,F$ are the feet of the altitudes from $A,B,C$, respectively. A line through $D$ parallel to $EF$ meets $AC$ at $Q$ and $AB$ at $R$. Lines $BC$ and $EF$ intersect at $P$. Prove that the circumcircle of triangle $PQR$ passes through the midpoint of $BC$.
2003 USA Team Selection Test, 6
Let $\overline{AH_1}, \overline{BH_2}$, and $\overline{CH_3}$ be the altitudes of an acute scalene triangle $ABC$. The incircle of triangle $ABC$ is tangent to $\overline{BC}, \overline{CA},$ and $\overline{AB}$ at $T_1, T_2,$ and $T_3$, respectively. For $k = 1, 2, 3$, let $P_i$ be the point on line $H_iH_{i+1}$ (where $H_4 = H_1$) such that $H_iT_iP_i$ is an acute isosceles triangle with $H_iT_i = H_iP_i$. Prove that the circumcircles of triangles $T_1P_1T_2$, $T_2P_2T_3$, $T_3P_3T_1$ pass through a common point.
2007 ITest, 15
Form a pentagon by taking a square of side length $1$ and an equilateral triangle of side length $1$ and placing the triangle so that one of its sides coincides with a side of the square. Then "circumscribe" a circle around the pentagon, passing through three of its vertices, so that the circle passes through exactly one vertex of the equilateral triangle, and exactly two vertices of the square. What is the radius of the circle?
$\textbf{(A) }\dfrac23\hspace{14.4em}\textbf{(B) }\dfrac34\hspace{14.4em}\textbf{(C) }1$
$\textbf{(D) }\dfrac54\hspace{14.4em}\textbf{(E) }\dfrac43\hspace{14.4em}\textbf{(F) }\dfrac{\sqrt2}2$
$\textbf{(G) }\dfrac{\sqrt3}2\hspace{13.5em}\textbf{(H) }\sqrt2\hspace{13.8em}\textbf{(I) }\sqrt3$
$\textbf{(J) }\dfrac{1+\sqrt3}2\hspace{12em}\textbf{(K) }\dfrac{2+\sqrt6}2\hspace{11.9em}\textbf{(L) }\dfrac76$
$\textbf{(M) }\dfrac{2+\sqrt6}4\hspace{11.5em}\textbf{(N) }\dfrac45\hspace{14.4em}\textbf{(O) }2007$
2014 Bosnia And Herzegovina - Regional Olympiad, 3
In triangle $ABC$ $(b \geq c)$, point $E$ is the midpoint of shorter arc $BC$. If $D$ is the point such that $ED$ is the diameter of circumcircle $ABC$, prove that $\angle DEA = \frac{1}{2}(\beta-\gamma)$
2014 ELMO Shortlist, 9
Let $P$ be a point inside a triangle $ABC$ such that $\angle PAC= \angle PCB$. Let the projections of $P$ onto $BC$, $CA$, and $AB$ be $X,Y,Z$ respectively. Let $O$ be the circumcenter of $\triangle XYZ$, $H$ be the foot of the altitude from $B$ to $AC$, $N$ be the midpoint of $AC$, and $T$ be the point such that $TYPO$ is a parallelogram. Show that $\triangle THN$ is similar to $\triangle PBC$.
[i]Proposed by Sammy Luo[/i]
2002 Turkey MO (2nd round), 2
Let $ABC$ be a triangle, and points $D,E$ are on $BA,CA$ respectively such that $DB=BC=CE$. Let $O,I$ be the circumcenter, incenter of $\triangle ABC$. Prove that the circumradius of $\triangle ADE$ is equal to $OI$.
2007 Turkey MO (2nd round), 2
Let $ABC$ be a triangle with $\angle B=90$. The incircle of $ABC$ touches the side $BC$ at $D$. The incenters of triangles $ABD$ and $ADC$ are $X$ and $Z$ , respectively. The lines $XZ$ and $AD$ are intersecting at the point $K$. $XZ$ and circumcircle of $ABC$ are intersecting at $U$ and $V$. Let $M$ be the midpoint of line segment $[UV]$ . $AD$ intersects the circumcircle of $ABC$ at $Y$ other than $A$. Prove that $|CY|=2|MK|$ .
1993 Turkey Team Selection Test, 2
Let $M$ be the circumcenter of an acute-angled triangle $ABC$. The circumcircle of triangle $BMA$ intersects $BC$ at $P$ and $AC$ at $Q$. Show that $CM \perp PQ$.
2011 Uzbekistan National Olympiad, 3
Given an acute triangle $ABC$ with altituties AD and BE. O circumcinter of $ABC$.If o lies on the segment DE then find the value of $sinAsinBcosC$
2016 Sharygin Geometry Olympiad, P13
$L$ is a Line that intersect with the side $AB,BC,AC$ of triangle $ABC$ at $F,D,E$
The line perpendicular to $BC$ from $D$ intersect $AB,AC$ at $A_{1},A_{2}$ respectively
Name $B_{1},B_{2},C_{1},C_{2}$ similarly
Prove that the circumcenters of $AA_{1}A_{2},BB_{1}B_{2},CC_{1}C_{2}$ are collinear
1960 IMO, 3
In a given right triangle $ABC$, the hypotenuse $BC$, of length $a$, is divided into $n$ equal parts ($n$ and odd integer). Let $\alpha$ be the acute angel subtending, from $A$, that segment which contains the mdipoint of the hypotenuse. Let $h$ be the length of the altitude to the hypotenuse fo the triangle. Prove that: \[ \tan{\alpha}=\dfrac{4nh}{(n^2-1)a}. \]
2004 Junior Balkan MO, 2
Let $ABC$ be an isosceles triangle with $AC=BC$, let $M$ be the midpoint of its side $AC$, and let $Z$ be the line through $C$ perpendicular to $AB$. The circle through the points $B$, $C$, and $M$ intersects the line $Z$ at the points $C$ and $Q$. Find the radius of the circumcircle of the triangle $ABC$ in terms of $m = CQ$.
2015 China Northern MO, 2
It is known that $\odot O$ is the circumcircle of $\vartriangle ABC$ wwith diameter $AB$. The tangents of $\odot O$ at points $B$ and $C$ intersect at $P$ . The line perpendicular to $PA$ at point $A$ intersects the extension of $BC$ at point $D$. Extend $DP$ at length $PE = PB$. If $\angle ADP = 40^o$ , find the measure of $\angle E$.
2011 Iran Team Selection Test, 1
In acute triangle $ABC$ angle $B$ is greater than$C$. Let $M$ is midpoint of $BC$. $D$ and $E$ are the feet of the altitude from $C$ and $B$ respectively. $K$ and $L$ are midpoint of $ME$ and $MD$ respectively. If $KL$ intersect the line through $A$ parallel to $BC$ in $T$, prove that $TA=TM$.
2012 USAMTS Problems, 2
Three wooden equilateral triangles of side length $18$ inches are placed on axles as shown in the diagram to the right. Each axle is $30$ inches from the other two axles. A $144$-inch leather band is wrapped around the wooden triangles, and a dot at the top corner is painted as shown. The three triangles are then rotated at the same speed and the band rotates without slipping or stretching. Compute the length of the path that the dot travels before it returns to its initial position at the top corner.
[asy]
size(150);
defaultpen(linewidth(0.8)+fontsize(10));
pair A=origin,B=(48,0),C=rotate(60,A)*B;
path equi=(0,0)--(18,0)--(9,9*sqrt(3))--cycle,circ=circle(centroid(A,B,C)*18/48,1/3);
picture a;
fill(a,equi,grey);
fill(a,circ,white);
add(a);
add(shift(15,15*sqrt(3))*a);
add(shift(30,0)*a);
draw(A--B--C--cycle,linewidth(1));
path top = circle(C,2/3);
unfill(top);
draw(top);
real r=-5/2;
draw((9,r+1)--(9,r-1)^^(9,r)--(39,r)^^(39,r-1)--(39,r+1));
label("$30$",(24,r),S);
[/asy]
2013 India IMO Training Camp, 2
In a triangle $ABC$, with $\widehat{A} > 90^\circ$, let $O$ and $H$ denote its circumcenter and orthocenter, respectively. Let $K$ be the reflection of $H$ with respect to $A$. Prove that $K, O$ and $C$ are collinear if and only if $\widehat{A} - \widehat{B} = 90^\circ$.
2008 IMAC Arhimede, 2
In the $ ABC$ triangle, the bisector of $A $ intersects the $ [BC] $ at the point $ A_ {1} $ , and the circle circumscribed to the triangle $ ABC $ at the point $ A_ {2} $. Similarly are defined $ B_ {1} $ and $ B_ {2} $ , as well as $ C_ {1} $ and $ C_ {2} $. Prove that
$$ \frac {A_{1}A_{2}}{BA_{2} + A_{2}C} + \frac {B_{1}B_{2}}{CB_{2} + B_{2}A} + \frac {C_{1}C_{2}}{AC_{2} + C_{2}B} \geq \frac {3}{4}$$
2024 Korea - Final Round, P4
For a triangle $ABC$, $O$ is the circumcircle and $D$ is a point on ray $BA$. $E$ and $F$ are points on $O$ so that $DE$ and $DF$ are tangent to $O$ and $EF$ cuts $AC$ at $T(\neq C)$. $P(\neq B,C)$ is a point on the arc $BC$ not containing $A$, and $DP$ cuts $O$ at $Q (\neq P)$. Let $BQ$ and $DT$ meets on $X (\neq Q)$, and $PT$ cuts $O$ at $Y (\neq P)$. Prove that $C,X,Y$ are collinear.
2024 Korea Junior Math Olympiad (First Round), 20.
There is a $\triangle ABC$ which $\angle C=90$, and $\bar{AB}=36$
On the circumcircle of $\triangle ABC$, there is $\overarc{BC}$ which does not include point $A$.
D is on $\overarc{BC}$. It satisfies $2\times\angle CAD = \angle BAD $
$E: \bar{AD}\cap\bar{BC} $ $ \bar{AE}=20 $
Find $ \bar{BD}^2 $
2018 Taiwan TST Round 1, 2
Given a scalene triangle $ \triangle ABC $. $ B', C' $ are points lie on the rays $ \overrightarrow{AB}, \overrightarrow{AC} $ such that $ \overline{AB'} = \overline{AC}, \overline{AC'} = \overline{AB} $. Now, for an arbitrary point $ P $ in the plane. Let $ Q $ be the reflection point of $ P $ w.r.t $ \overline{BC} $. The intersections of $ \odot{\left(BB'P\right)} $ and $ \odot{\left(CC'P\right)} $ is $ P' $ and the intersections of $ \odot{\left(BB'Q\right)} $ and $ \odot{\left(CC'Q\right)} $ is $ Q' $. Suppose that $ O, O' $ are circumcenters of $ \triangle{ABC}, \triangle{AB'C'} $ Show that
1. $ O', P', Q' $ are colinear
2. $ \overline{O'P'} \cdot \overline{O'Q'} = \overline{OA}^{2} $
2005 USA Team Selection Test, 6
Let $ABC$ be an acute scalene triangle with $O$ as its circumcenter. Point $P$ lies inside triangle $ABC$ with $\angle PAB = \angle PBC$ and $\angle PAC = \angle PCB$. Point $Q$ lies on line $BC$ with $QA = QP$. Prove that $\angle AQP = 2\angle OQB$.
2005 France Pre-TST, 1
Let $I$ be the incenter of the triangle $ABC$, et let $A',B',C'$ be the symmetric of $I$ with respect to the lines $BC,CA,AB$ respectively. It is known that $B$ belongs to the circumcircle of $A'B'C'$.
Find $\widehat {ABC}$.
Pierre.
2000 India National Olympiad, 1
The incircle of $ABC$ touches $BC$, $CA$, $AB$ at $K$, $L$, $M$ respectively. The line through $A$ parallel to $LK$ meets $MK$ at $P$, and the line through $A$ parallel to $MK$ meets $LK$ at $Q$. Show that the line $PQ$ bisects $AB$ and bisects $AC$.
2019 India IMO Training Camp, P1
Let the points $O$ and $H$ be the circumcenter and orthocenter of an acute angled triangle $ABC.$ Let $D$ be the midpoint of $BC.$ Let $E$ be the point on the angle bisector of $\angle BAC$ such that $AE\perp HE.$ Let $F$ be the point such that $AEHF$ is a rectangle. Prove that $D,E,F$ are collinear.