This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2014 China Girls Math Olympiad, 1

In the figure of [url]http://www.artofproblemsolving.com/Forum/download/file.php?id=50643&mode=view[/url] $\odot O_1$ and $\odot O_2$ intersect at two points $A$, $B$. The extension of $O_1A$ meets $\odot O_2$ at $C$, and the extension of $O_2A$ meets $\odot O_1$ at $D$, and through $B$ draw $BE \parallel O_2A$ intersecting $\odot O_1$ again at $E$. If $DE \parallel O_1A$, prove that $DC \perp CO_2$.

2021 Yasinsky Geometry Olympiad, 4

Let $BF$ and $CN$ be the altitudes of the acute triangle $ABC$. Bisectors the angles $ACN$ and $ABF$ intersect at the point $T$. Find the radius of the circle circumscribed around the triangle $FTN$, if it is known that $BC = a$. (Grigory Filippovsky)

2013 South africa National Olympiad, 3

Let ABC be an acute-angled triangle and AD one of its altitudes (D on BC). The line through D parallel to AB is denoted by $l$, and t is the tangent to the circumcircle of ABC at A. Finally, let E be the intersection of $l$ and t. Show that CE and t are perpendicular to each other.

2006 Estonia National Olympiad, 3

Let $AG, CH$ be the angle bisectors of a triangle $ABC$. It is known that one of the intersections of the circles of triangles $ABG$ and $ACH$ lies on the side $BC$. Prove that the angle $BAC$ is $60 ^o$

2013 JBMO Shortlist, 4

Let $I$ be the incenter and $AB$ the shortest side of the triangle $ABC$. The circle centered at $I$ passing through $C$ intersects the ray $AB$ in $P$ and the ray $BA$ in $Q$. Let $D$ be the point of tangency of the $A$-excircle of the triangle $ABC$ with the side $BC$. Let $E$ be the reflection of $C$ with respect to the point $D$. Prove that $PE\perp CQ$.

2007 China Girls Math Olympiad, 5

Point $D$ lies inside triangle $ABC$ such that $\angle DAC = \angle DCA = 30^{\circ}$ and $\angle DBA = 60^{\circ}$. Point $E$ is the midpoint of segment $BC$. Point $F$ lies on segment $AC$ with $AF = 2FC$. Prove that $DE \perp EF$.

2010 India IMO Training Camp, 7

Let $ABCD$ be a cyclic quadrilaterla and let $E$ be the point of intersection of its diagonals $AC$ and $BD$. Suppose $AD$ and $BC$ meet in $F$. Let the midpoints of $AB$ and $CD$ be $G$ and $H$ respectively. If $\Gamma $ is the circumcircle of triangle $EGH$, prove that $FE$ is tangent to $\Gamma $.

2012 NIMO Problems, 10

In cyclic quadrilateral $ABXC$, $\measuredangle XAB = \measuredangle XAC$. Denote by $I$ the incenter of $\triangle ABC$ and by $D$ the projection of $I$ on $\overline{BC}$. If $AI = 25$, $ID = 7$, and $BC = 14$, then $XI$ can be expressed as $\frac{a}{b}$ for relatively prime positive integers $a, b$. Compute $100a + b$. [i]Proposed by Aaron Lin[/i]

2010 Contests, 2

Let $ABC$ be an acute triangle with orthocentre $H$, and let $M$ be the midpoint of $AC$. The point $C_1$ on $AB$ is such that $CC_1$ is an altitude of the triangle $ABC$. Let $H_1$ be the reflection of $H$ in $AB$. The orthogonal projections of $C_1$ onto the lines $AH_1$, $AC$ and $BC$ are $P$, $Q$ and $R$, respectively. Let $M_1$ be the point such that the circumcentre of triangle $PQR$ is the midpoint of the segment $MM_1$. Prove that $M_1$ lies on the segment $BH_1$.

1988 IMO Longlists, 40

[b]i.)[/b] Consider a circle $K$ with diameter $AB;$ with circle $L$ tangent to $AB$ and to $K$ and with a circle $M$ tangent to circle $K,$ circle $L$ and $AB.$ Calculate the ration of the area of circle $K$ to the area of circle $M.$ [b]ii.)[/b] In triangle $ABC, AB = AC$ and $\angle CAB = 80^{\circ}.$ If points $D,E$ and $F$ lie on sides $BC, AC$ and $AB,$ respectively and $CE = CD$ and $BF = BD,$ then find the size of $\angle EDF.$

2000 China Team Selection Test, 1

Let $ABC$ be a triangle such that $AB = AC$. Let $D,E$ be points on $AB,AC$ respectively such that $DE = AC$. Let $DE$ meet the circumcircle of triangle $ABC$ at point $T$. Let $P$ be a point on $AT$. Prove that $PD + PE = AT$ if and only if $P$ lies on the circumcircle of triangle $ADE$.

2006 Iran Team Selection Test, 5

Let $ABC$ be an acute angle triangle. Suppose that $D,E,F$ are the feet of perpendicluar lines from $A,B,C$ to $BC,CA,AB$. Let $P,Q,R$ be the feet of perpendicular lines from $A,B,C$ to $EF,FD,DE$. Prove that \[ 2(PQ+QR+RP)\geq DE+EF+FD \]

2018 Balkan MO Shortlist, G2

Let $ABC$ be a triangle inscribed in circle $\Gamma$ with center $O$. Let $H$ be the orthocenter of triangle $ABC$ and let $K$ be the midpoint of $OH$. Tangent of $\Gamma$ at $B$ intersects the perpendicular bisector of $AC$ at $L$. Tangent of $\Gamma$ at $C$ intersects the perpendicular bisector of $AB$ at $M$. Prove that $AK$ and $LM$ are perpendicular. by Michael Sarantis, Greece

2003 All-Russian Olympiad, 3

In a triangle $ABC, O$ is the circumcenter and $I$ the incenter. The excircle $\omega_a$ touches rays $AB,AC$ and side $BC$ at $K,M,N$, respectively. Prove that if the midpoint $P$ of $KM$ lies on the circumcircle of $\triangle ABC$, then points $O,N, I$ lie on a line.

2018 Baltic Way, 13

The bisector of the angle $A$ of a triangle $ABC$ intersects $BC$ in a point $D$ and intersects the circumcircle of the triangle $ABC$ in a point $E$. Let $K,L,M$ and $N$ be the midpoints of the segments $AB,BD,CD$ and $AC$, respectively. Let $P$ be the circumcenter of the triangle $EKL$, and $Q$ be the circumcenter of the triangle $EMN$. Prove that $\angle PEQ=\angle BAC$.

1990 ITAMO, 2

In a triangle $ABC$, the bisectors of the angles at $B$ and $A$ meet the opposite sides at $P$ and $Q$, respectively. Suppose that the circumcircle of triangle $PQC$ passes through the incenter $R $ of $\vartriangle ABC$. Given that $PQ = l$, find all sides of triangle $PQR$.

2009 China Girls Math Olympiad, 2

Right triangle $ ABC,$ with $ \angle A\equal{}90^{\circ},$ is inscribed in circle $ \Gamma.$ Point $ E$ lies on the interior of arc $ {BC}$ (not containing $ A$) with $ EA>EC.$ Point $ F$ lies on ray $ EC$ with $ \angle EAC \equal{} \angle CAF.$ Segment $ BF$ meets $ \Gamma$ again at $ D$ (other than $ B$). Let $ O$ denote the circumcenter of triangle $ DEF.$ Prove that $ A,C,O$ are collinear.

1985 IMO Longlists, 37

Prove that a triangle with angles $\alpha, \beta, \gamma$, circumradius $R$, and area $A$ satisfies \[\tan \frac{ \alpha}{2}+\tan \frac{ \beta}{2}+\tan \frac{ \gamma}{2} \leq \frac{9R^2}{4A}.\] [hide="Remark."]Remark. Can we determine [i]all[/i] of equality cases ?[/hide]

2008 Bosnia And Herzegovina - Regional Olympiad, 1

Given is an acute angled triangle $ \triangle ABC$ with side lengths $ a$, $ b$ and $ c$ (in an usual way) and circumcenter $ O$. Angle bisector of angle $ \angle BAC$ intersects circumcircle at points $ A$ and $ A_{1}$. Let $ D$ be projection of point $ A_{1}$ onto line $ AB$, $ L$ and $ M$ be midpoints of $ AC$ and $ AB$ , respectively. (i) Prove that $ AD\equal{}\frac{1}{2}(b\plus{}c)$ (ii) If triangle $ \triangle ABC$ is an acute angled prove that $ A_{1}D\equal{}OM\plus{}OL$

1963 AMC 12/AHSME, 10

Point $P$ is taken interior to a square with side-length $a$ and such that is it equally distant from two consecutive vertices and from the side opposite these vertices. If $d$ represents the common distance, then $d$ equals: $\textbf{(A)}\ \dfrac{3a}{5} \qquad \textbf{(B)}\ \dfrac{5a}{8} \qquad \textbf{(C)}\ \dfrac{3a}{8} \qquad \textbf{(D)}\ \dfrac{a\sqrt{2}}{2} \qquad \textbf{(E)}\ \dfrac{a}{2}$

2008 Sharygin Geometry Olympiad, 8

(J.-L.Ayme, France) Points $ P$, $ Q$ lie on the circumcircle $ \omega$ of triangle $ ABC$. The perpendicular bisector $ l$ to $ PQ$ intersects $ BC$, $ CA$, $ AB$ in points $ A'$, $ B'$, $ C'$. Let $ A"$, $ B"$, $ C"$ be the second common points of $ l$ with the circles $ A'PQ$, $ B'PQ$, $ C'PQ$. Prove that $ AA"$, $ BB"$, $ CC"$ concur.

2007 Polish MO Finals, 1

1. In acute triangle $ABC$ point $O$ is circumcenter, segment $CD$ is a height, point $E$ lies on side $AB$ and point $M$ is a midpoint of $CE$. Line through $M$ perpendicular to $OM$ cuts lines $AC$ and $BC$ respectively in $K$, $L$. Prove that $\frac{LM}{MK}=\frac{AD}{DB}$

2024 Francophone Mathematical Olympiad, 3

Let $ABC$ be an acute triangle, $\omega$ its circumcircle and $O$ its circumcenter. The altitude from $A$ intersects $\omega$ in a point $D \ne A$ and the segment $AC$ intersects the circumcircle of $OCD$ in a point $E \ne C$. Finally, let $M$ be the midpoint of $BE$. Show that $DE$ is parallel to $OM$.

2012 Postal Coaching, 5

In triangle $ABC$, $\angle BAC = 94^{\circ},\ \angle ACB = 39^{\circ}$. Prove that \[ BC^2 = AC^2 + AC\cdot AB\].

1968 IMO Shortlist, 14

A line in the plane of a triangle $ABC$ intersects the sides $AB$ and $AC$ respectively at points $X$ and $Y$ such that $BX = CY$ . Find the locus of the center of the circumcircle of triangle $XAY .$