This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1704

2006 Iran Team Selection Test, 1

We have $n$ points in the plane, no three on a line. We call $k$ of them good if they form a convex polygon and there is no other point in the convex polygon. Suppose that for a fixed $k$ the number of $k$ good points is $c_k$. Show that the following sum is independent of the structure of points and only depends on $n$ : \[ \sum_{i=3}^n (-1)^i c_i \]

1993 Abels Math Contest (Norwegian MO), 4

Each of the $8$ vertices of a given cube is given a value $1$ or $-1$. Each of the $6$ faces is given the value of product of its four vertices. Let $A$ be the sum of all the $14$ values. Which are the possible values of $A$?

2019 Istmo Centroamericano MO, 5

Gabriel plays to draw triangles using the vertices of a regular polygon with $2019$ sides, following these rules: (i) The vertices used by each triangle must not have been previously used. (ii) The sides of the triangle to be drawn must not intersect with the sides of the triangles previously drawn. If Gabriel continues to draw triangles until it is no longer possible, determine the minimum number of triangles that he drew.

2002 Denmark MO - Mohr Contest, 2

Prove that for any integer $n$ greater than $5$, a square can be divided into $n$ squares.

1996 Portugal MO, 6

In a regular polygon with $134$ sides, $67$ diagonals are drawn so that exactly one diagonal emerges from each vertex. We call the [i]length[/i] of a diagonal the number of sides of the polygon included between the vertices of the diagonal and which is less than or equal to $67$. If we order the [i]lengths [/i] of the diagonals in ascending order, we obtain a succession of $67$ numbers $(d_1,d_2,...,d_{67})$. It will be possible to draw diagonals such that a) $(d_1,d_2,...,d_{67})=\underbrace{2 ... 2}_{6},\underbrace{3 ... 3}_{61}$ ? b) $(d_1,d_2,...,d_{67}) =\underbrace{3 ... 3}_{8},\underbrace{6 ... 6}_{55}.\underbrace{8 ... 8}_{4} $ ?

2023 Denmark MO - Mohr Contest, 3

In a field, $2023$ friends are standing in such a way that all distances between them are distinct. Each of them fires a water pistol at the friend that stands closest. Prove that at least one person does not get wet.

2012 Bundeswettbewerb Mathematik, 4

A rectangle with the side lengths $a$ and $b$ with $a <b$ should be placed in a right-angled coordinate system so that there is no point with integer coordinates in its interior or on its edge. Under what necessary and at the same time sufficient conditions for $a$ and $b$ is this possible?

1992 Tournament Of Towns, (329) 6

A circle is divided into $n$ sectors. Pawns stand on some of the sectors; the total number of pawns equals $n + 1$. This configuration is changed as follows. Any two of the pawns standing on the same sector move simultaneously to the neighbouring sectors in different directions. Prove that after several such transformations a configuration in which no less than half of the sectors are occupied by pawns, will inevitably appear. (D. Fomin, St Petersburg)

1991 IMO Shortlist, 8

$ S$ be a set of $ n$ points in the plane. No three points of $ S$ are collinear. Prove that there exists a set $ P$ containing $ 2n \minus{} 5$ points satisfying the following condition: In the interior of every triangle whose three vertices are elements of $ S$ lies a point that is an element of $ P.$

2008 BAMO, 3

A triangle is constructed with the lengths of the sides chosen from the set $\{2, 3, 5, 8, 13, 21, 34, 55, 89, 144\}$. Show that this triangle must be isosceles. (A triangle is isosceles if it has at least two sides the same length.)

V Soros Olympiad 1998 - 99 (Russia), 9.4

There are n points marked on the circle. It is known that among all possible distances between two marked points there are no more than $100$ different ones. What is the largest possible value for $n$?

2016 Romanian Master of Mathematics, 6

A set of $n$ points in Euclidean 3-dimensional space, no four of which are coplanar, is partitioned into two subsets $\mathcal{A}$ and $\mathcal{B}$. An $\mathcal{AB}$-tree is a configuration of $n-1$ segments, each of which has an endpoint in $\mathcal{A}$ and an endpoint in $\mathcal{B}$, and such that no segments form a closed polyline. An $\mathcal{AB}$-tree is transformed into another as follows: choose three distinct segments $A_1B_1$, $B_1A_2$, and $A_2B_2$ in the $\mathcal{AB}$-tree such that $A_1$ is in $\mathcal{A}$ and $|A_1B_1|+|A_2B_2|>|A_1B_2|+|A_2B_1|$, and remove the segment $A_1B_1$ to replace it by the segment $A_1B_2$. Given any $\mathcal{AB}$-tree, prove that every sequence of successive transformations comes to an end (no further transformation is possible) after finitely many steps.

Ukraine Correspondence MO - geometry, 2013.12

Krut and Vert go by car from point $A$ to point $B$. The car leaves $A$ in the direction of $B$, but every $3$ km of the road Krut turns $90^o$ to the left, and every $7$ km of the road Vert turns $90^o$ to the right ( if they try to turn at the same time, the car continues to go in the same direction). Will Krut and Vert be able to get to $B$ if the distance between $A$ and $B$ is $100$ km?

1992 Tournament Of Towns, (349) 1

We are given a cube with edges of length $n$ cm. At our disposal is a long piece of insulating tape of width $1$ cm. It is required to stick this tape to the cube. The tape may freely cross an edge of the cube on to a different face but it must always be parallel to an edge of the cube. It may not overhang the edge of a face or cross over a vertex. How many pieces of the tape are necessary in order to completely cover the cube? (You may assume that $n$ is an integer.) (A Spivak)

2004 All-Russian Olympiad, 1

Each grid point of a cartesian plane is colored with one of three colors, whereby all three colors are used. Show that one can always find a right-angled triangle, whose three vertices have pairwise different colors.

2004 Polish MO Finals, 5

Find the greatest possible number of lines in space that all pass through a single point and the angle between any two of them is the same.

1978 All Soviet Union Mathematical Olympiad, 255

Given a finite set $K_0$ of points (in the plane or space). The sequence of sets $K_1, K_2, ... , K_n, ...$ is constructed according to the rule: [i]we take all the points of $K_i$, add all the symmetric points with respect to all its points, and, thus obtain $K_{i+1}$.[/i] a) Let $K_0$ consist of two points $A$ and $B$ with the distance $1$ unit between them. For what $n$ the set $K_n$ contains the point that is $1000$ units far from $A$? b) Let $K_0$ consist of three points that are the vertices of the equilateral triangle with the unit square. Find the area of minimal convex polygon containing $K_n. K_0$ below is the set of the unit volume tetrahedron vertices. c) How many faces contain the minimal convex polyhedron containing $K_1$? d) What is the volume of the above mentioned polyhedron? e) What is the volume of the minimal convex polyhedron containing $K_n$?

2021 Sharygin Geometry Olympiad, 23

Six points in general position are given in the space. For each two of them color red the common points (if they exist) of the segment between these points and the surface of the tetrahedron formed by four remaining points. Prove that the number of red points is even.

1947 Moscow Mathematical Olympiad, 135-

Position the $4$ points on plane so that when measuring of all pairwise distances between them, it turned out only two different numbers. Find all such locations.

2015 Balkan MO Shortlist, G3

A set of points of the plane is called [i] obtuse-angled[/i] if every three of it's points are not collinear and every triangle with vertices inside the set has one angle $ >91^o$. Is it correct that every finite [i] obtuse-angled[/i] set can be extended to an infinite [i]obtuse-angled[/i] set? (UK)

1972 All Soviet Union Mathematical Olympiad, 166

Each of the $9$ straight lines divides the given square onto two quadrangles with the areas ratio as $2:3$. Prove that there exist three of them intersecting in one point

2014 HMNT, 6

Let $P_1$, $P_2$, $P_3$ be pairwise distinct parabolas in the plane. Find the maximum possible number of intersections between two or more of the $P_i$. In other words, find the maximum number of points that can lie on two or more of the parabolas $P_1$, $P_2$, $P_3$ .

1967 German National Olympiad, 6

Prove the following theorem: If there are $n$ pairs of different points $P_i$, $i = 1, 2, ..., n$, $n > 2$ in three dimensions space, such that each of them is at a smaller distance from one and the same point $Q$ than any other $P_i$, then $n < 15$.

1998 China Team Selection Test, 2

Let $n$ be a natural number greater than 2. $l$ is a line on a plane. There are $n$ distinct points $P_1$, $P_2$, …, $P_n$ on $l$. Let the product of distances between $P_i$ and the other $n-1$ points be $d_i$ ($i = 1, 2,$ …, $n$). There exists a point $Q$, which does not lie on $l$, on the plane. Let the distance from $Q$ to $P_i$ be $C_i$ ($i = 1, 2,$ …, $n$). Find $S_n = \sum_{i = 1}^{n} (-1)^{n-i} \frac{c_i^2}{d_i}$.

2011 JBMO Shortlist, 8

Determine the polygons with $n$ sides $(n \ge 4)$, not necessarily convex, which satisfy the property that the reflection of every vertex of polygon with respect to every diagonal of the polygon does not fall outside the polygon. [b]Note:[/b] Each segment joining two non-neighboring vertices of the polygon is a diagonal. The reflection is considered with respect to the support line of the diagonal.