Found problems: 563
2012 Romanian Master of Mathematics, 2
Given a non-isosceles triangle $ABC$, let $D,E$, and $F$ denote the midpoints of the sides $BC,CA$, and $AB$ respectively. The circle $BCF$ and the line $BE$ meet again at $P$, and the circle $ABE$ and the line $AD$ meet again at $Q$. Finally, the lines $DP$ and $FQ$ meet at $R$. Prove that the centroid $G$ of the triangle $ABC$ lies on the circle $PQR$.
[i](United Kingdom) David Monk[/i]
2024 IMC, 1
Determine all pairs $(a,b) \in \mathbb{C} \times \mathbb{C}$ of complex numbers satisfying $|a|=|b|=1$ and $a+b+a\overline{b} \in \mathbb{R}$.
1955 Czech and Slovak Olympiad III A, 3
In the complex plane consider the unit circle with the origin as its center. Furthermore, consider inscribed regular 17-gon with one of its vertices being $1+0i.$ How many of its vertices lie in the (open) unit disc centered in $\sqrt{3/2}(1+i)$?
1998 Romania National Olympiad, 2
Let $a \ge1$ be a real number and $z$ be a complex number such that $| z + a | \le a$ and $|z^2+ a | \le a$. Show that $| z | \le a$.
2009 AIME Problems, 2
There is a complex number $ z$ with imaginary part $ 164$ and a positive integer $ n$ such that
\[ \frac {z}{z \plus{} n} \equal{} 4i.
\]Find $ n$.
2023 USA TSTST, 5
Suppose $a,\,b,$ and $c$ are three complex numbers with product $1$. Assume that none of $a,\,b,$ and $c$ are real or have absolute value $1$. Define
\begin{tabular}{c c c}
$p=(a+b+c)+\left(\dfrac 1a+\dfrac 1b+\dfrac 1c\right)$ & \text{and} & $q=\dfrac ab+\dfrac bc+\dfrac ca$.
\end{tabular}
Given that both $p$ and $q$ are real numbers, find all possible values of the ordered pair $(p,q)$.
[i]David Altizio[/i]
1982 IMO Longlists, 48
Given a finite sequence of complex numbers $c_1, c_2, \ldots , c_n$, show that there exists an integer $k$ ($1 \leq k \leq n$) such that for every finite sequence $a_1, a_2, \ldots, a_n$ of real numbers with $1 \geq a_1 \geq a_2 \geq \cdots \geq a_n \geq 0$, the following inequality holds:
\[\left| \sum_{m=1}^n a_mc_m \right| \leq \left| \sum_{m=1}^k c_m \right|.\]
2012 Iran Team Selection Test, 3
The pentagon $ABCDE$ is inscirbed in a circle $w$. Suppose that $w_a,w_b,w_c,w_d,w_e$ are reflections of $w$ with respect to sides $AB,BC,CD,DE,EA$ respectively. Let $A'$ be the second intersection point of $w_a,w_e$ and define $B',C',D',E'$ similarly. Prove that
\[2\le \frac{S_{A'B'C'D'E'}}{S_{ABCDE}}\le 3,\]
where $S_X$ denotes the surface of figure $X$.
[i]Proposed by Morteza Saghafian, Ali khezeli[/i]
2019 BMT Spring, 5
Find the area of the set of all points $ z $ in the complex plane that satisfy $ \left| z - 3i \right| + \left| z - 4 \right| \leq 5\sqrt{2} $.
2005 India Regional Mathematical Olympiad, 1
Let ABCD be a convex quadrilateral; P,Q, R,S are the midpoints of AB, BC, CD, DA respectively such that triangles AQR, CSP are equilateral. Prove that ABCD is a rhombus. Find its angles.
1999 Romania National Olympiad, 3
Let $a,b,c \in \mathbb{C}$ and $a \neq 0$. The roots $z_1$ and $z_2$ of the equation $az^2+bz+c=0$ satisfy $|z_1|<1$ and $|z_2|<1$. Prove that the roots $z_3$ and $z_4$ of the equation $$(a+\overline{c})z^2+(b+\overline{b})z+\overline{a}+c=0$$
satisfy $|z_3|=|z_4|=1$
2019 PUMaC Team Round, 7
For all sets $A$ of complex numbers, let $P(A)$ be the product of the elements of $A$. Let $S_z = \{1, 2, 9, 99, 999, \frac{1}{z},\frac{1}{z^2}\}$, let $T_z$ be the set of nonempty subsets of $S_z$ (including $S_z$), and let $f(z) = 1 + \sum_{s\in T_z} P(s)$. Suppose $f(z) = 6125000$ for some complex number $z$. Compute the product of all possible values of $z$.
2015 Iran MO (3rd round), 4
$p(x)\in \mathbb{C}[x]$ is a polynomial such that:
$\forall z\in \mathbb{C}, |z|=1\Longrightarrow p(z)\in \mathbb{R}$
Prove that $p(x)$ is constant.
2002 AMC 12/AHSME, 23
The equation $z(z+i)(z+3i)=2002i$ has a zero of the form $a+bi$, where $a$ and $b$ are positive real numbers. Find $a$.
$\textbf{(A) }\sqrt{118}\qquad\textbf{(B) }\sqrt{210}\qquad\textbf{(C) }2\sqrt{210}\qquad\textbf{(D) }\sqrt{2002}\qquad\textbf{(E) }100\sqrt2$
1991 India National Olympiad, 7
Solve the following system for real $x,y,z$
\[ \{ \begin{array}{ccc} x+ y -z & =& 4 \\ x^2 - y^2 + z^2 & = & -4 \\ xyz & =& 6. \end{array} \]
1994 APMO, 2
Given a nondegenerate triangle $ABC$, with circumcentre $O$, orthocentre $H$, and circumradius $R$, prove that $|OH| < 3R$.
2004 Germany Team Selection Test, 3
We attach to the vertices of a regular hexagon the numbers $1$, $0$, $0$, $0$, $0$, $0$. Now, we are allowed to transform the numbers by the following rules:
(a) We can add an arbitrary integer to the numbers at two opposite vertices.
(b) We can add an arbitrary integer to the numbers at three vertices forming an equilateral triangle.
(c) We can subtract an integer $t$ from one of the six numbers and simultaneously add $t$ to the two neighbouring numbers.
Can we, just by acting several times according to these rules, get a cyclic permutation of the initial numbers? (I. e., we started with $1$, $0$, $0$, $0$, $0$, $0$; can we now get $0$, $1$, $0$, $0$, $0$, $0$, or $0$, $0$, $1$, $0$, $0$, $0$, or $0$, $0$, $0$, $1$, $0$, $0$, or $0$, $0$, $0$, $0$, $1$, $0$, or $0$, $0$, $0$, $0$, $0$, $1$ ?)
2019 Teodor Topan, 2
Prove that a complex number $ z $ is real and positive if for any nonnegative integers $ n, $ the number
$$ z^{2^n} +\bar{z}^{2^n} $$
is real and positive.
[i]Sorin Rădulescu[/i]
DMM Individual Rounds, 2009 Tie
[b]p1[/b]. Your Halloween took a bad turn, and you are trapped on a small rock above a sea of lava. You are on rock $1$, and rocks $2$ through $12$ are arranged in a straight line in front of you. You want to get to rock $12$. You must jump from rock to rock, and you can either (1) jump from rock $n$ to $n + 1$ or (2) jump from rock $n$ to $n + 2$. Unfortunately, you are weak from eating too much candy, and you cannot do (2) twice in a row. How many different sequences of jumps will take you to your destination?
[b]p2.[/b] Find the number of ordered triples $(p; q; r)$ such that $p, q, r$ are prime, $pq + pr$ is a perfect square and $p + q + r \le 100$.
[b]p3.[/b] Let $x, y, z$ be nonzero complex numbers such that $\frac{1}{x}+\frac{1}{y} + \frac{1}{z} \ne 0$ and
$$x^2(y + z) + y^2(z + x) + z^2(x + y) = 4(xy + yz + zx) = -3xyz.$$ Find $\frac{x^3 + y^3 + z^3}{x^2 + y^2 + z^2}$ .
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2015 Romania National Olympiad, 4
Let be three natural numbers $ k,m,n $ an $ m\times n $ matrix $ A, $ an $ n\times m $ matrix $ B, $ and $ k $ complex numbers $ a_0,a_1,\ldots ,a_k $ such that the following conditions hold.
$ \text{(i)}\quad m\ge n\ge 2 $
$ \text{(ii)}\quad a_0I_m+a_1AB+a_2(AB)^2+\cdots +a_k(AB)^k=O_m $
$ \text{(iii)}\quad a_0I_m+a_1BA+a_2(BA)^2+\cdots +a_k(BA)^k\neq O_n $
Prove that $ a_0=0. $
2008 Bulgaria Team Selection Test, 2
The point $P$ lies inside, or on the boundary of, the triangle $ABC$. Denote by $d_{a}$, $d_{b}$ and $d_{c}$ the distances between $P$ and $BC$, $CA$, and $AB$, respectively. Prove that $\max\{AP,BP,CP \} \ge \sqrt{d_{a}^{2}+d_{b}^{2}+d_{c}^{2}}$. When does the equality holds?
2021 BMT, 14
Let $r_1, r_2, ..., r_{47}$ be the roots of $x^{47} - 1 = 0$. Compute $$\sum^{47}_{i=1}r^{2020}_i .$$
2008 Alexandru Myller, 2
There are no integers $ a,b,c $ that satisfy $ \left( a+b\sqrt{-3}\right)^{17}=c+\sqrt{-3} . $
[i]Dorin Andrica, Mihai Piticari[/i]
2011 District Olympiad, 2
[b]a)[/b] Show that if four distinct complex numbers have the same absolute value and their sum vanishes, then they represent a rectangle.
[b]b)[/b] Let $ x,y,z,t $ be four real numbers, and $ k $ be an integer. Prove the following implication:
$$ \sum_{j\in\{ x,y,z,t\}} \sin j = 0 = \sum_{j\in\{ x,y,z,t\}} \cos j\implies \sum_{j\in\{ x,y,z,t\}} \sin (1+2n)j. $$
2021 Alibaba Global Math Competition, 4
Let $n$ be a positive integer. For any positive integer $k$, let $0_k=diag\{\underbrace{0, ...,0}_{k}\}$ be a $k \times k$ zero matrix. Let $Y=\begin{pmatrix}
0_n & A \\
A^t & 0_{n+1}
\end{pmatrix}$ be a $(2n+1) \times (2n+1)$ where $A=(x_{i, j})_{1\leq i \leq n, 1\leq j \leq n+1}$ is a $n \times (n+1)$ real matrix. Let $A^T$ be transpose matrix of $A$ i.e. $(n+1) \times n$ matrix, the element of $(j, i)$ is $x_{i, j}$.
(a) Let complex number $\lambda$ be an eigenvalue of $k \times k$ matrix $X$. If there exists nonzero column vectors $v=(x_1, ..., x_k)^t$ such that $Xv=\lambda v$. Prove that 0 is the eigenvalue of $Y$ and the other eigenvalues of $Y$ can be expressed as a form of $\pm \sqrt{\lambda}$ where nonnegative real number $\lambda$ is the eigenvalue of $AA^t$.
(b) Let $n=3$ and $a_1$, $a_2$, $a_3$, $a_4$ are $4$ distinct positive real numbers. Let $a=\sqrt[]{\sum_{1\leq i \leq 4}^{}a^{2}_{i}}$ and $x_{i,j}=a_i\delta_{i,j}+a_j\delta_{4,j}-\frac{1}{a^2}(a^2_{i}+a^2_{4})a_j$ where $1\leq i \leq 3, 1\leq j \leq 4$, $\delta_{i, j}=
\begin{cases}
1 \text{ if } i=j\\
0 \text{ if } i\neq j\\
\end{cases}\,$. Prove that $Y$ has 7 distinct eigenvalue.