This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 297

1967 Swedish Mathematical Competition, 2

You are given a ruler with two parallel straight edges a distance $d$ apart. It may be used (1) to draw the line through two points, (2) given two points a distance $\ge d$ apart, to draw two parallel lines, one through each point, (3) to draw a line parallel to a given line, a distance d away. One can also (4) choose an arbitrary point in the plane, and (5) choose an arbitrary point on a line. Show how to construct : (A) the bisector of a given angle, and (B) the perpendicular to the midpoint of a given line segment.

2011 BAMO, 4

In a plane, we are given line $\ell$, two points $A$ and $B$ neither of which lies on line $\ell$, and the reflection $A_1$ of point $A$ across line $\ell$. Using only a straightedge, construct the reflection $B_1$ of point $B$ across line $\ell$. Prove that your construction works. Note: “Using only a straightedge” means that you can perform only the following operations: (a) Given two points, you can construct the line through them. (b) Given two intersecting lines, you can construct their intersection point. (c) You can select (mark) points in the plane that lie on or off objects already drawn in the plane. (The only facts you can use about these points are which lines they are on or not on.)

2019 Turkey MO (2nd round), 2

Let $d(n)$ denote the number of divisors of a positive integer $n$. If $k$ is a given odd number, prove that there exist an increasing arithmetic progression in positive integers $(a_1,a_2,\ldots a_{2019}) $ such that $gcd(k,d(a_1)d(a_2)\ldots d(a_{2019})) =1$

1994 Austrian-Polish Competition, 9

On the plane are given four distinct points $A,B,C,D$ on a line $g$ in this order, at the mutual distances $AB = a, BC = b, CD = c$. (a) Construct (if possible) a point $P$ outside line $g$ such that $\angle APB =\angle BPC =\angle CPD$. (b) Prove that such a point $P$ exists if and only if $ (a+b)(b+c) < 4ac$

2004 Austria Beginners' Competition, 4

Of a rhombus $ABCD$ we know the circumradius $R$ of $\Delta ABC$ and $r$ of $\Delta BCD$. Construct the rhombus.

2022 Yasinsky Geometry Olympiad, 1

An angle whose degree measure is equal to $108^o$ is given . Describe how with help compass and ruler can divide this angle into three equal parts. (Yukhim Rabinovych)

Swiss NMO - geometry, 2015.4

Given a circle $k$ and two points $A$ and $B$ outside the circle. Specify how to can construct a circle with a compass and ruler, so that $A$ and $B$ lie on that circle and that circle is tangent to $k$.

1970 Vietnam National Olympiad, 4

$AB$ and $CD$ are perpendicular diameters of a circle. $L$ is the tangent to the circle at $A$. $M$ is a variable point on the minor arc $AC$. The ray $BM, DM$ meet the line $L$ at $P$ and $Q$ respectively. Show that $AP\cdot AQ = AB\cdot PQ$. Show how to construct the point $M$ which gives$ BQ$ parallel to $DP$. If the lines $OP$ and $BQ$ meet at $N$ find the locus of $N$. The lines $BP$ and $BQ$ meet the tangent at $D$ at $P'$ and $Q'$ respectively. Find the relation between $P'$ and $Q$'. The lines $D$P and $DQ$ meet the line $BC$ at $P"$ and $Q"$ respectively. Find the relation between $P"$ and $Q"$.

2022 Argentina National Olympiad Level 2, 3

Let $A$, $X$ and $Y$ be three non-collinear points on the plane. Construct with a straightedge and compass a square $ABCD$ such that $X$ is on the line $BC$ and $Y$ is on the line $CD$.

2008 Hanoi Open Mathematics Competitions, 9

Consider a triangle $ABC$. For every point M $\in BC$ ,we define $N \in CA$ and $P \in AB$ such that $APMN$ is a parallelogram. Let $O$ be the intersection of $BN$ and $CP$. Find $M \in BC$ such that $\angle PMO=\angle OMN$

2015 Sharygin Geometry Olympiad, P9

Let $ABC$ be an acute-angled triangle. Construct points $A', B', C'$ on its sides $BC, CA, AB$ such that: - $A'B' \parallel AB$, - $C'C$ is the bisector of angle $A'C'B'$, - $A'C' + B'C'= AB$.

2023 Turkey MO (2nd round), 1

Prove that there exist infinitely many positive integers $k$ such that the equation $$\frac{n^2+m^2}{m^4+n}=k$$ don't have any positive integer solution.

2025 Taiwan Mathematics Olympiad, 4

Find all positive integers $n$ satisfying the following: there exists a way to fill in $1, \cdots, n^2$ into a $n \times n$ grid so that each block has exactly one number, each number appears exactly once, and: 1. For all positive integers $1 \leq i < n^2$, $i$ and $i + 1$ are neighbors (two numbers neighbor each other if and only if their blocks share a common edge.) 2. Any two numbers among $1^2, \cdots, n^2$ are not in the same row or the same column.

1981 Brazil National Olympiad, 3

Given a sheet of paper and the use of a rule, compass and pencil, show how to draw a straight line that passes through two given points, if the length of the ruler and the maximum opening of the compass are both less than half the distance between the two points. You may not fold the paper.

2005 Sharygin Geometry Olympiad, 13

A triangle $ABC$ and two lines $\ell_1, \ell_2$ are given. Through an arbitrary point $D$ on the side $AB$, a line parallel to $\ell_1$ intersects the $AC$ at point $E$ and a line parallel to $\ell_2$ intersects the $BC$ at point $F$. Construct a point $D$ for which the segment $EF$ has the smallest length.

1987 ITAMO, 3

Show how to construct (by a ruler and a compass) a right-angled triangle, given its inradius and circumradius.

2012 BAMO, 4

Laura won the local math olympiad and was awarded a "magical" ruler. With it, she can draw (as usual) lines in the plane, and she can also measure segments and replicate them anywhere in the plane; but she can also divide a segment into as many equal parts as she wishes; for instance, she can divide any segment into $17$ equal parts. Laura drew a parallelogram $ABCD$ and decided to try out her magical ruler; with it, she found the midpoint $M$ of side $CD$, and she extended $CB$ beyond $B$ to point $N$ so that segments $CB$ and $BN$ were equal in length. Unfortunately, her mischievous little brother came along and erased everything on Laura's picture except for points $A, M$, and $N$. Using Laura's magical ruler, help her reconstruct the original parallelogram $ABCD$: write down the steps that she needs to follow and prove why this will lead to reconstructing the original parallelogram $ABCD$.

1895 Eotvos Mathematical Competition, 2

Construct a point $N$ inside a given right triangle $ABC$ such that the angles $\angle NBC$, $\angle NCA$ and $\angle NAB$ are equal.

1956 Polish MO Finals, 3

On a straight line, three distinct points $ M $, $ D $, $ H $ are given. Construct a right-angled triangle for which $ M $ is the midpoint of the hypotenuse, $ D $ is the point of intersection of the bisector of the right angle with the hypotenuse, and $ H $ is the foot of the altitude to the hypotenuse.

2024 Yasinsky Geometry Olympiad, 4

Let \( I \) and \( M \) be the incenter and the centroid of a scalene triangle \( ABC \), respectively. A line passing through point \( I \) parallel to \( BC \) intersects \( AC \) and \( AB \) at points \( E \) and \( F \), respectively. Reconstruct triangle \( ABC \) given only the marked points \( E, F, I, \) and \( M \). [i]Proposed by Hryhorii Filippovskyi[/i]

1959 IMO, 4

Construct a right triangle with given hypotenuse $c$ such that the median drawn to the hypotenuse is the geometric mean of the two legs of the triangle.

2021 Yasinsky Geometry Olympiad, 5

Construct an equilateral trapezoid given the height and the midline, if it is known that the midline is divided by diagonals into three equal parts. (Grigory Filippovsky)

1960 IMO Shortlist, 4

Construct triangle $ABC$, given $h_a$, $h_b$ (the altitudes from $A$ and $B$), and $m_a$, the median from vertex $A$.

2015 USA Team Selection Test, 1

Let $f : \mathbb Q \to \mathbb Q$ be a function such that for any $x,y \in \mathbb Q$, the number $f(x+y)-f(x)-f(y)$ is an integer. Decide whether it follows that there exists a constant $c$ such that $f(x) - cx$ is an integer for every rational number $x$. [i]Proposed by Victor Wang[/i]

1984 Spain Mathematical Olympiad, 1

At a position $O$ of an airport in a plateau there is a gun which can rotate arbitrarily. Two tanks moving along two given segments $AB$ and $CD$ attack the airport. Determine, by a ruler and a compass, the reach of the gun, knowing that the total length of the parts of the trajectories of the two tanks reachable by the gun is equal to a given length $\ell$.