This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 65

2007 Sharygin Geometry Olympiad, 3

The diagonals of a convex quadrilateral dissect it into four similar triangles. Prove that this quadrilateral can also be dissected into two congruent triangles.

1995 Czech and Slovak Match, 5

The diagonals of a convex quadrilateral $ABCD$ are orthogonal and intersect at point $E$. Prove that the reflections of $E$ in the sides of quadrilateral $ABCD$ lie on a circle.

1989 IMO Shortlist, 13

Let $ ABCD$ be a convex quadrilateral such that the sides $ AB, AD, BC$ satisfy $ AB \equal{} AD \plus{} BC.$ There exists a point $ P$ inside the quadrilateral at a distance $ h$ from the line $ CD$ such that $ AP \equal{} h \plus{} AD$ and $ BP \equal{} h \plus{} BC.$ Show that: \[ \frac {1}{\sqrt {h}} \geq \frac {1}{\sqrt {AD}} \plus{} \frac {1}{\sqrt {BC}} \]

2023 Bulgaria National Olympiad, 4

Prove that there exists a unique point $M$ on the side $AD$ of a convex quadrilateral $ABCD$ such that \[\sqrt{S_{ABM}}+\sqrt{S_{CDM}} = \sqrt{S_{ABCD}}\] if and only if $AB\parallel CD$.

1962 German National Olympiad, 4

A convex flat quadrilateral is given. Prove that for the ratio $q$ of the largest to the smallest of all distances, for any two vertices: $q \ge \sqrt2$. [hide=original wording]Gegeben sei ein konvexes ebenes Viereck. Es ist zu beweisen, dass fur den Quotienten q aus dem großten und dem kleinsten aller Abstande zweier beliebiger Eckpunkte voneinander stets gilt: q >= \sqrt2.[/hide]

1989 IMO Longlists, 40

Let $ ABCD$ be a convex quadrilateral such that the sides $ AB, AD, BC$ satisfy $ AB \equal{} AD \plus{} BC.$ There exists a point $ P$ inside the quadrilateral at a distance $ h$ from the line $ CD$ such that $ AP \equal{} h \plus{} AD$ and $ BP \equal{} h \plus{} BC.$ Show that: \[ \frac {1}{\sqrt {h}} \geq \frac {1}{\sqrt {AD}} \plus{} \frac {1}{\sqrt {BC}} \]

2009 Sharygin Geometry Olympiad, 2

Given a convex quadrilateral $ABCD$. Let $R_a, R_b, R_c$ and $R_d$ be the circumradii of triangles $DAB, ABC, BCD, CDA$. Prove that inequality $R_a < R_b < R_c < R_d$ is equivalent to $180^o - \angle CDB < \angle CAB < \angle CDB$ . (O.Musin)

1969 IMO Longlists, 68

$(USS 5)$ Given $5$ points in the plane, no three of which are collinear, prove that we can choose $4$ points among them that form a convex quadrilateral.

2015 Hanoi Open Mathematics Competitions, 11

Given a convex quadrilateral $ABCD$. Let $O$ be the intersection point of diagonals $AC$ and $BD$ and let $I , K , H$ be feet of perpendiculars from $B , O , C$ to $AD$, respectively. Prove that $AD \times BI \times CH \le AC \times BD \times OK$.

2024 Polish Junior MO Finals, 1

Can we find a convex quadrilateral $ABCD$ with an interior point $P$ satisfying \[AB=AP, \quad BC=BP, \quad CD=CP, \quad \text{and} \quad DA=DP \quad ?\]

2006 Belarusian National Olympiad, 5

A convex quadrilateral $ABCD$ Is placed on the Cartesian plane. Its vertices $A$ and $D$ belong to the negative branch of the graph of the hyperbola $y= 1/x$, the vertices $B$ and $C$ belong to the positive branch of the graph and point $B$ lies at the left of $C$, the segment $AC$ passes through the origin $(0,0)$. Prove that $\angle BAD = \angle BCD$. (I, Voronovich)

1978 Germany Team Selection Test, 2

Let $S$ be a convex quadrilateral $ABCD$ and $O$ a point inside it. The feet of the perpendiculars from $O$ to $AB, BC, CD, DA$ are $A_1, B_1, C_1, D_1$ respectively. The feet of the perpendiculars from $O$ to the sides of $S_i$, the quadrilateral $A_iB_iC_iD_i$, are $A_{i+1}B_{i+1}C_{i+1}D_{i+1}$, where $i = 1, 2, 3.$ Prove that $S_4$ is similar to S.

2005 Sharygin Geometry Olympiad, 10.1

A convex quadrangle without parallel sides is given. For each triple of its vertices, a point is constructed that supplements this triple to a parallelogram, one of the diagonals of which coincides with the diagonal of the quadrangle. Prove that of the four points constructed, exactly one lies inside the original quadrangle.

May Olympiad L2 - geometry, 2009.2

Let $ABCD$ be a convex quadrilateral such that the triangle $ABD$ is equilateral and the triangle $BCD$ is isosceles, with $\angle C = 90^o$. If $E$ is the midpoint of the side $AD$, determine the measure of the angle $\angle CED$.

1992 IMO Shortlist, 5

A convex quadrilateral has equal diagonals. An equilateral triangle is constructed on the outside of each side of the quadrilateral. The centers of the triangles on opposite sides are joined. Show that the two joining lines are perpendicular. [i]Alternative formulation.[/i] Given a convex quadrilateral $ ABCD$ with congruent diagonals $ AC \equal{} BD.$ Four regular triangles are errected externally on its sides. Prove that the segments joining the centroids of the triangles on the opposite sides are perpendicular to each other. [i]Original formulation:[/i] Let $ ABCD$ be a convex quadrilateral such that $ AC \equal{} BD.$ Equilateral triangles are constructed on the sides of the quadrilateral. Let $ O_1,O_2,O_3,O_4$ be the centers of the triangles constructed on $ AB,BC,CD,DA$ respectively. Show that $ O_1O_3$ is perpendicular to $ O_2O_4.$

1978 Germany Team Selection Test, 2

Let $S$ be a convex quadrilateral $ABCD$ and $O$ a point inside it. The feet of the perpendiculars from $O$ to $AB, BC, CD, DA$ are $A_1, B_1, C_1, D_1$ respectively. The feet of the perpendiculars from $O$ to the sides of $S_i$, the quadrilateral $A_iB_iC_iD_i$, are $A_{i+1}B_{i+1}C_{i+1}D_{i+1}$, where $i = 1, 2, 3.$ Prove that $S_4$ is similar to S.

1989 IMO, 4

Let $ ABCD$ be a convex quadrilateral such that the sides $ AB, AD, BC$ satisfy $ AB \equal{} AD \plus{} BC.$ There exists a point $ P$ inside the quadrilateral at a distance $ h$ from the line $ CD$ such that $ AP \equal{} h \plus{} AD$ and $ BP \equal{} h \plus{} BC.$ Show that: \[ \frac {1}{\sqrt {h}} \geq \frac {1}{\sqrt {AD}} \plus{} \frac {1}{\sqrt {BC}} \]

2014 Czech-Polish-Slovak Match, 3

Given is a convex $ABCD$, which is $ |\angle ABC| = |\angle ADC|= 135^\circ $. On the $AB, AD$ are also selected points $M, N$ such that $ |\angle MCD| = |\angle NCB| = 90^ \circ $. The circumcircles of the triangles $AMN$ and $ABD$ intersect for the second time at point $K \ne A$. Prove that lines $AK $ and $KC$ are perpendicular. (Irán)

2009 IMAR Test, 3

Consider a convex quadrilateral $ABCD$ with $AB=CB$ and $\angle ABC +2 \angle CDA = \pi$ and let $E$ be the midpoint of $AC$. Show that $\angle CDE =\angle BDA$. Paolo Leonetti

Ukrainian TYM Qualifying - geometry, VI.1

Find all nonconvex quadrilaterals in which the sum of the distances to the lines containing the sides is the same for any interior point. Try to generalize the result in the case of an arbitrary non-convex polygon, polyhedron.

1977 IMO Shortlist, 8

Let $S$ be a convex quadrilateral $ABCD$ and $O$ a point inside it. The feet of the perpendiculars from $O$ to $AB, BC, CD, DA$ are $A_1, B_1, C_1, D_1$ respectively. The feet of the perpendiculars from $O$ to the sides of $S_i$, the quadrilateral $A_iB_iC_iD_i$, are $A_{i+1}B_{i+1}C_{i+1}D_{i+1}$, where $i = 1, 2, 3.$ Prove that $S_4$ is similar to S.

1999 Korea Junior Math Olympiad, 1

There exists point $O$ inside a convex quadrilateral $ABCD$ satisfying $OA=OB$ and $OC=OD$, and $\angle AOB = \angle COD=90^{\circ}$. Consider two squares, (1)square having $AC$ as one side and located in the opposite side of $B$ and (2)square having $BD$ as one side and located in the opposite side of $E$. If the common part of these two squares is also a square, prove that $ABCD$ is an inscribed quadrilateral.

2019 ISI Entrance Examination, 5

A subset $\bf{S}$ of the plane is called [i]convex[/i] if given any two points $x$ and $y$ in $\bf{S}$, the line segment joining $x$ and $y$ is contained in $\bf{S}$. A quadrilateral is called [i]convex[/i] if the region enclosed by the edges of the quadrilateral is a convex set. Show that given a convex quadrilateral $Q$ of area $1$, there is a rectangle $R$ of area $2$ such that $Q$ can be drawn inside $R$.

1982 IMO Shortlist, 20

Let $ABCD$ be a convex quadrilateral and draw regular triangles $ABM, CDP, BCN, ADQ$, the first two outward and the other two inward. Prove that $MN = AC$. What can be said about the quadrilateral $MNPQ$?

2008 IMO, 6

Let $ ABCD$ be a convex quadrilateral with $ BA\neq BC$. Denote the incircles of triangles $ ABC$ and $ ADC$ by $ \omega_{1}$ and $ \omega_{2}$ respectively. Suppose that there exists a circle $ \omega$ tangent to ray $ BA$ beyond $ A$ and to the ray $ BC$ beyond $ C$, which is also tangent to the lines $ AD$ and $ CD$. Prove that the common external tangents to $ \omega_{1}$ and $\omega_{2}$ intersect on $ \omega$. [i]Author: Vladimir Shmarov, Russia[/i]