This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 670

2018 USAMO, 5

In convex cyclic quadrilateral $ABCD$, we know that lines $AC$ and $BD$ intersect at $E$, lines $AB$ and $CD$ intersect at $F$, and lines $BC$ and $DA$ intersect at $G$. Suppose that the circumcircle of $\triangle ABE$ intersects line $CB$ at $B$ and $P$, and the circumcircle of $\triangle ADE$ intersects line $CD$ at $D$ and $Q$, where $C,B,P,G$ and $C,Q,D,F$ are collinear in that order. Prove that if lines $FP$ and $GQ$ intersect at $M$, then $\angle MAC = 90^\circ$. [i]Proposed by Kada Williams[/i]

2008 Brazil Team Selection Test, 3

Denote by $ M$ midpoint of side $ BC$ in an isosceles triangle $ \triangle ABC$ with $ AC = AB$. Take a point $ X$ on a smaller arc $ \overarc{MA}$ of circumcircle of triangle $ \triangle ABM$. Denote by $ T$ point inside of angle $ BMA$ such that $ \angle TMX = 90$ and $ TX = BX$. Prove that $ \angle MTB - \angle CTM$ does not depend on choice of $ X$. [i]Author: Farzan Barekat, Canada[/i]

2019 Regional Olympiad of Mexico West, 4

Let $ABC$ be a triangle. $M$ the midpoint of $AB$ and $L$ the midpoint of $BC$. We denote by $G$ the intersection of $AL$ with $CM$ and we take $E$ a point such that $G$ is the midpoint of the segment $AE$. Prove that the quadrilateral $MCEB$ is cyclic if and only if $MB = BG$.

2013 Iran Team Selection Test, 1

In acute-angled triangle $ABC$, let $H$ be the foot of perpendicular from $A$ to $BC$ and also suppose that $J$ and $I$ are excenters oposite to the side $AH$ in triangles $ABH$ and $ACH$. If $P$ is the point that incircle touches $BC$, prove that $I,J,P,H$ are concyclic.

2019 Pan-African Shortlist, G3

Let $ABCD$ be a cyclic quadrilateral with its diagonals intersecting at $E$. Let $M$ be the midpoint of $AB$. Suppose that $ME$ is perpendicular to $CD$. Show that either $AC$ is perpendicular to $BD$, or $AB$ is parallel to $CD$.

2024 USA TSTST, 8

Let $ABC$ be a scalene triangle, and let $D$ be a point on side $BC$ satisfying $\angle BAD=\angle DAC$. Suppose that $X$ and $Y$ are points inside $ABC$ such that triangles $ABX$ and $ACY$ are similar and quadrilaterals $ACDX$ and $ABDY$ are cyclic. Let lines $BX$ and $CY$ meet at $S$ and lines $BY$ and $CX$ meet at $T$. Prove that lines $DS$ and $AT$ are parallel. [i]Michael Ren[/i]

2006 Oral Moscow Geometry Olympiad, 1

The diagonals of the inscribed quadrangle $ABCD$ intersect at point $K$. Prove that the tangent at point $K$ to the circle circumscribed around the triangle $ABK$ is parallel to $CD$. (A Zaslavsky)

1966 IMO Shortlist, 36

Let $ABCD$ be a quadrilateral inscribed in a circle. Show that the centroids of triangles $ABC,$ $CDA,$ $BCD,$ $DAB$ lie on one circle.

2003 Poland - Second Round, 2

The quadrilateral $ABCD$ is inscribed in the circle $o$. Bisectors of angles $DAB$ and $ABC$ intersect at point $P$, and bisectors of angles $BCD$ and $CDA$ intersect in point $Q$. Point $M$ is the center of this arc $BC$ of the circle $o$ which does not contain points $D$ and $A$. Point $N$ is the center of the arc $DA$ of the circle $o$, which does not contain points $B$ and $C$. Prove that the points $P$ and $Q$ lie on the line perpendicular to $MN$.

2017 India IMO Training Camp, 2

Let $ABC$ be a triangle with $AB = AC \neq BC$ and let $I$ be its incentre. The line $BI$ meets $AC$ at $D$, and the line through $D$ perpendicular to $AC$ meets $AI$ at $E$. Prove that the reflection of $I$ in $AC$ lies on the circumcircle of triangle $BDE$.

1972 Poland - Second Round, 5

Prove that in a convex quadrilateral inscribed in a circle, straight lines passing through the midpoints of the sides and perpendicular to the opposite sides intersect at one point.

2023 pOMA, 2

Let $\triangle ABC$ be an acute triangle, and let $D,E,F$ respectively be three points on sides $BC,CA,AB$ such that $AEDF$ is a cyclic quadrilateral. Let $O_B$ and $O_C$ be the circumcenters of $\triangle BDF$ and $\triangle CDE$, respectively. Finally, let $D'$ be a point on segment $BC$ such that $BD'=CD$. Prove that $\triangle BD'O_B$ and $\triangle CD'O_C$ have the same surface.

2015 Belarus Team Selection Test, 2

In a cyclic quadrilateral $ABCD$, the extensions of sides $AB$ and $CD$ meet at point $P$, and the extensions of sides $AD$ and $BC$ meet at point $Q$. Prove that the distance between the orthocenters of triangles $APD$ and $AQB$ is equal to the distance between the orthocenters of triangles $CQD$ and $BPC$.

1992 Flanders Math Olympiad, 4

Let $A,B,P$ positive reals with $P\le A+B$. (a) Choose reals $\theta_1,\theta_2$ with $A\cos\theta_1 + B\cos\theta_2=P$ and prove that \[ A\sin\theta_1 + B\sin\theta_2 \le \sqrt{(A+B-P)(A+B+P)} \] (b) Prove equality is attained when $\theta_1=\theta_2=\arccos\left(\dfrac{P}{A+B}\right)$. (c) Take $A=\dfrac{1}{2}xy, B=\dfrac{1}{2}wz$ and $P=\dfrac14 \left(x^2+y^2-z^2-w^2\right)$ with $0<x\le y\le x+z+w$, $z,w>0$ and $z^2+w^2<x^2+y^2$. Show that we can translate (a) and (b) into the following theorem: from all quadrilaterals with (ordered) sidelenghts $(x,y,z,w)$, the cyclical one has the greatest area.

2010 Philippine MO, 2

On a cyclic quadrilateral $ABCD$, there is a point $P$ on side $AD$ such that the triangle $CDP$ and the quadrilateral $ABCP$ have equal perimeters and equal areas. Prove that two sides of $ABCD$ have equal lengths.

2016 Nordic, 2

Let $ABCD$ be a cyclic quadrilateral satysfing $AB=AD$ and $AB+BC=CD$. Determine $\measuredangle CDA$.

2021 Lotfi Zadeh Olympiad, 1

In the inscribed quadrilateral $ABCD$, $P$ is the intersection point of diagonals and $M$ is the midpoint of arc $AB$. Prove that line $MP$ passes through the midpoint of segment $CD$, if and only if lines $AB, CD$ are parallel.

2006 Estonia Team Selection Test, 4

The side $AC$ of an acute triangle $ABC$ is the diameter of the circle $c_1$ and side $BC$ is the diameter of the circle $c_2$. Let $E$ be the foot of the altitude drawn from the vertex $B$ of the triangle and $F$ the foot of the altitude drawn from the vertex $A$. In addition, let $L$ and $N$ be the points of intersection of the line $BE$ with the circle $c_1$ (the point $L$ lies on the segment $BE$) and the points of intersection of $K$ and $M$ of line $AF$ with circle $c_2$ (point $K$ is in section $AF$). Prove that $K LM N$ is a cyclic quadrilateral.

1986 Polish MO Finals, 6

$ABC$ is a triangle. The feet of the perpendiculars from $B$ and $C$ to the angle bisector at $A$ are $K, L$ respectively. $N$ is the midpoint of $BC$, and $AM$ is an altitude. Show that $K,L,N,M$ are concyclic.

1966 IMO Longlists, 37

Show that the four perpendiculars dropped from the midpoints of the sides of a cyclic quadrilateral to the respective opposite sides are concurrent. [b]Note by Darij:[/b] A [i]cyclic quadrilateral [/i]is a quadrilateral inscribed in a circle.

2010 Brazil Team Selection Test, 3

Given a cyclic quadrilateral $ABCD$, let the diagonals $AC$ and $BD$ meet at $E$ and the lines $AD$ and $BC$ meet at $F$. The midpoints of $AB$ and $CD$ are $G$ and $H$, respectively. Show that $EF$ is tangent at $E$ to the circle through the points $E$, $G$ and $H$. [i]Proposed by David Monk, United Kingdom[/i]

2023 Iran Team Selection Test, 2

$ABCD$ is cyclic quadrilateral and $O$ is the center of its circumcircle. Suppose that $AD \cap BC = E$ and $AC \cap BD = F$. Circle $\omega$ is tanget to line $AC$ and $BD$. $PQ$ is a diameter of $\omega$ that $F$ is orthocenter of $EPQ$. Prove that line $OE$ is passing through center of $\omega$ [i]Proposed by Mahdi Etesami Fard [/i]

2024 Austrian MO National Competition, 2

Let $h$ be a semicircle with diameter $AB$. The two circles $k_1$ and $k_2$, $k_1 \ne k_2$, touch the segment $AB$ at the points $C$ and $D$, respectively, and the semicircle $h$ fom the inside at the points $E$ and $F$, respectively. Prove that the four points $C$, $D$, $E$ and $F$ lie on a circle. [i](Walther Janous)[/i]

1992 India Regional Mathematical Olympiad, 4

$ABCD$ is a cyclic quadrilateral with $AC \perp BD$; $AC$ meets $BD$ at $E$. Prove that \[ EA^2 + EB^2 + EC^2 + ED^2 = 4 R^2 \] where $R$ is the radius of the circumscribing circle.

2021 Macedonian Mathematical Olympiad, Problem 3

Let $ABCD$ be a trapezoid with $AD \parallel BC$ and $\angle BCD < \angle ABC < 90^\circ$. Let $E$ be the intersection point of the diagonals $AC$ and $BD$. The circumcircle $\omega$ of $\triangle BEC$ intersects the segment $CD$ at $X$. The lines $AX$ and $BC$ intersect at $Y$, while the lines $BX$ and $AD$ intersect at $Z$. Prove that the line $EZ$ is tangent to $\omega$ iff the line $BE$ is tangent to the circumcircle of $\triangle BXY$.