This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 670

1995 Swedish Mathematical Competition, 5

On a circle with center $O$ and radius $r$ are given points $A,B,C,D$ in this order such that $AB, BC$ and $CD$ have the same length $s$ and the length of $AD$ is $s+ r$.Assume that $s < r$. Determine the angles of quadrilateral $ABCD$.

OMMC POTM, 2023 4

Let $ABCD$ be a quadrilateral inscribed in a circle with center $O$. Points $X$ and $Y$ lie on sides $AB$ and $CD$, respectively. Suppose the circumcircles of $CDX$ and $ABY$ meet line $XY$ again at $P$ and $Q$ respectively. Show that $OP=OQ$. [i]Proposed by Evan Chang (squareman), USA[/i]

2013 Dutch BxMO/EGMO TST, 5

Let $ABCD$ be a cyclic quadrilateral for which $|AD| =|BD|$. Let $M$ be the intersection of $AC$ and $BD$. Let $I$ be the incentre of $\triangle BCM$. Let $N$ be the second intersection pointof $AC$ and the circumscribed circle of $\triangle BMI$. Prove that $|AN| \cdot |NC| = |CD | \cdot |BN|$.

2021 South East Mathematical Olympiad, 6

Let $ABCD$ be a cyclic quadrilateral. Let $E$ be a point on side $BC,$ $F$ be a point on side $AE,$ $G$ be a point on the exterior angle bisector of $\angle BCD,$ such that $EG=FG,$ $\angle EAG=\dfrac12\angle BAD.$ Prove that $AB\cdot AF=AD\cdot AE.$

1966 IMO Longlists, 36

Let $ABCD$ be a quadrilateral inscribed in a circle. Show that the centroids of triangles $ABC,$ $CDA,$ $BCD,$ $DAB$ lie on one circle.

2003 All-Russian Olympiad, 2

The diagonals of a cyclic quadrilateral $ABCD$ meet at $O$. Let $S_1, S_2$ be the circumcircles of triangles $ABO$ and $CDO$ respectively, and $O,K$ their intersection points. The lines through $O$ parallel to $AB$ and $CD$ meet $S_1$ and $S_2$ again at $L$ and $M$, respectively. Points $P$ and $Q$ on segments $OL$ and $OM$ respectively are taken such that $OP : PL = MQ : QO$. Prove that $O,K, P,Q$ lie on a circle.

2013 India IMO Training Camp, 2

Let $ABCD$ by a cyclic quadrilateral with circumcenter $O$. Let $P$ be the point of intersection of the diagonals $AC$ and $BD$, and $K, L, M, N$ the circumcenters of triangles $AOP, BOP$, $COP, DOP$, respectively. Prove that $KL = MN$.

2020 China Northern MO, BP4

In $\triangle ABC$, $\angle BAC = 60^{\circ}$, point $D$ lies on side $BC$, $O_1$ and $O_2$ are the centers of the circumcircles of $\triangle ABD$ and $\triangle ACD$, respectively. Lines $BO_1$ and $CO_2$ intersect at point $P$. If $I$ is the incenter of $\triangle ABC$ and $H$ is the orthocenter of $\triangle PBC$, then prove that the four points $B,C,I,H$ are on the same circle.

Croatia MO (HMO) - geometry, 2013.3

Given a pointed triangle $ABC$ with orthocenter $H$. Let $D$ be the point such that the quadrilateral $AHCD$ is parallelogram. Let $p$ be the perpendicular to the direction $AB$ through the midpoint $A_1$ of the side $BC$. Denote the intersection of the lines $p$ and $AB$ with $E$, and the midpoint of the length $A_1E$ with $F$. The point where the parallel to the line $BD$ through point $A$ intersects $p$ denote by $G$. Prove that the quadrilateral $AFA_1C$ is cyclic if and only if the lines $BF$ passes through the midpoint of the length $CG$.

2019 Dutch IMO TST, 4

Let $\Delta ABC$ be a scalene triangle. Points $D,E$ lie on side $\overline{AC}$ in the order, $A,E,D,C$. Let the parallel through $E$ to $BC$ intersect $\odot (ABD)$ at $F$, such that, $E$ and $F$ lie on the same side of $AB$. Let the parallel through $E$ to $AB$ intersect $\odot (BDC)$ at $G$, such that, $E$ and $G$ lie on the same side of $BC$. Prove, Points $D,F,E,G$ are concyclic

1985 Brazil National Olympiad, 3

A convex quadrilateral is inscribed in a circle of radius $1$. Show that the its perimeter less the sum of its two diagonals lies between $0$ and $2$.

2021 South East Mathematical Olympiad, 6

Let $ABCD$ be a cyclic quadrilateral. The internal angle bisector of $\angle BAD$ and line $BC$ intersect at $E.$ $M$ is the midpoint of segment $AE.$ The exterior angle bisector of $\angle BCD$ and line $AD$ intersect at $F.$ The lines $MF$ and $AB$ intersect at $G.$ Prove that if $AB=2AD,$ then $MF=2MG.$

2009 Peru MO (ONEM), 2

In a quadrilateral $ABCD$, a circle is inscribed that is tangent to the sides $AB, BC, CD$ and $DA$ at points $M, N, P$ and $Q$, respectively. If $(AM) (CP) = (BN) (DQ)$, prove that $ABCD$ is an cyclic quadrilateral.

2000 Irish Math Olympiad, 2

In a cyclic quadrilateral $ ABCD, a,b,c,d$ are its side lengths, $ Q$ its area, and $ R$ its circumradius. Prove that: $ R^2\equal{}\frac{(ab\plus{}cd)(ac\plus{}bd)(ad\plus{}bc)}{16Q^2}$. Deduce that $ R \ge \frac{(abcd)^{\frac{3}{4}}}{Q\sqrt{2}}$ with equality if and only if $ ABCD$ is a square.

2006 Tournament of Towns, 4

Quadrilateral $ABCD$ is a cyclic, $AB = AD$. Points $M$ and $N$ are chosen on sides $BC$ and $CD$ respectfully so that $\angle MAN =1/2 (\angle BAD)$. Prove that $MN = BM + ND$. [i](5 points)[/i]

1994 IMO Shortlist, 4

Let $ ABC$ be an isosceles triangle with $ AB \equal{} AC$. $ M$ is the midpoint of $ BC$ and $ O$ is the point on the line $ AM$ such that $ OB$ is perpendicular to $ AB$. $ Q$ is an arbitrary point on $ BC$ different from $ B$ and $ C$. $ E$ lies on the line $ AB$ and $ F$ lies on the line $ AC$ such that $ E, Q, F$ are distinct and collinear. Prove that $ OQ$ is perpendicular to $ EF$ if and only if $ QE \equal{} QF$.

2016 Costa Rica - Final Round, G2

Let $ABCD$ be a convex quadrilateral, such that $ A$, $ B$, $C$, and $D$ lie on a circle, with $\angle DAB < \angle ABC$. Let $I$ be the intersection of the bisector of $\angle ABC$ with the bisector of $\angle BAD$. Let $\ell$ be the parallel line to $CD$ passing through point $I$. Suppose $\ell$ cuts segments $DA$ and $BC$ at $ L$ and $J$, respectively. Prove that $AL + JB = LJ$.

2015 Chile National Olympiad, 5

A quadrilateral $ABCD$ is inscribed in a circle. Suppose that $|DA| =|BC|= 2$ and$ |AB| = 4$. Let $E $ be the intersection point of lines $BC$ and $DA$. Suppose that $\angle AEB = 60^o$ and that $|CD| <|AB|$. Calculate the radius of the circle.

2014 PUMaC Geometry B, 8

$ABCD$ is a cyclic quadrilateral with circumcenter $O$ and circumradius $7$. $AB$ intersects $CD$ at $E$, $DA$ intersects $CB$ at $F$. $OE=13$, $OF=14$. Let $\cos\angle FOE=\dfrac pq$, with $p$, $q$ coprime. Find $p+q$.

1997 IMO Shortlist, 23

Let $ ABCD$ be a convex quadrilateral. The diagonals $ AC$ and $ BD$ intersect at $ K$. Show that $ ABCD$ is cyclic if and only if $ AK \sin A \plus{} CK \sin C \equal{} BK \sin B \plus{} DK \sin D$.

2006 Bulgaria National Olympiad, 2

The triangle $ABC$ is such that $\angle BAC=30^{\circ},\angle ABC=45^{\circ}$. Prove that if $X$ lies on the ray $AC$, $Y$ lies on the ray $BC$ and $OX=BY$, where $O$ is the circumcentre of triangle $ABC$, then $S_{XY}$ passes through a fixed point. [i]Emil Kolev [/i]

2021 Korea Junior Math Olympiad, 3

Let $ABCD$ be a cyclic quadrilateral with circumcircle $\Omega$ and let diagonals $AC$ and $BD$ intersect at $X$. Suppose that $AEFB$ is inscribed in a circumcircle of triangle $ABX$ such that $EF$ and $AB$ are parallel. $FX$ meets the circumcircle of triangle $CDX$ again at $G$. Let $EX$ meets $AB$ at $P$, and $XG$ meets $CD$ at $Q$. Denote by $S$ the intersection of the perpendicular bisector of $\overline{EG}$ and $\Omega$ such that $S$ is closer to $A$ than $B$. Prove that line through $S$ parallel to $PQ$ is tangent to $\Omega$.

Croatia MO (HMO) - geometry, 2019.7

On the side $AB$ of the cyclic quadrilateral $ABCD$ there is a point $X$ such that diagonal $AC$ bisects the segment $DX$, and the diagonal $BD$ bisects the segment $CX$. What is the smallest possible ratio $|AB | : |CD|$ in such a quadrilateral ?

2007 Harvard-MIT Mathematics Tournament, 30

$ABCD$ is a cyclic quadrilateral in which $AB=3$, $BC=5$, $CD=6$, and $AD=10$. $M$, $I$, and $T$ are the feet of the perpendiculars from $D$ to lines $AB$, $AC$, and $BC$ respectively. Determine the value of $MI/IT$.

2024 AMC 12/AHSME, 19

Cyclic quadrilateral $ABCD$ has lengths $BC=CD=3$ and $DA=5$ with $\angle CDA=120^\circ$. What is the length of the shorter diagonal of $ABCD$? $ \textbf{(A) }\frac{31}7 \qquad \textbf{(B) }\frac{33}7 \qquad \textbf{(C) }5 \qquad \textbf{(D) }\frac{39}7 \qquad \textbf{(E) }\frac{41}7 \qquad $