This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 125

2009 Putnam, B5

Let $ f: (1,\infty)\to\mathbb{R}$ be a differentiable function such that \[ f'(x)\equal{}\frac{x^2\minus{}\left(f(x)\right)^2}{x^2\left(\left(f(x)\right)^2\plus{}1\right)}\quad\text{for all }x>1.\] Prove that $ \displaystyle\lim_{x\to\infty}f(x)\equal{}\infty.$

1984 Iran MO (2nd round), 1

Let $f$ and $g$ be two functions such that \[f(x)=\frac{1}{\lfloor | x | \rfloor}, \quad g(x)=\frac{1}{|\lfloor x \rfloor |}.\] Find the domains of $f$ and $g$ and then prove that \[\lim_{x \to -1^+} f(x)= \lim_{x \to 1^- } g(x).\]

2005 District Olympiad, 4

Let $(A,+,\cdot)$ be a finite unit ring, with $n\geq 3$ elements in which there exist [b]exactly[/b] $\dfrac {n+1}2$ perfect squares (e.g. a number $b\in A$ is called a perfect square if and only if there exists an $a\in A$ such that $b=a^2$). Prove that a) $1+1$ is invertible; b) $(A,+,\cdot)$ is a field. [i]Proposed by Marian Andronache[/i]

2010 AMC 12/AHSME, 24

Let $ f(x) \equal{} \log_{10} (\sin (\pi x)\cdot\sin (2\pi x)\cdot\sin (3\pi x) \cdots \sin (8\pi x))$. The intersection of the domain of $ f(x)$ with the interval $ [0,1]$ is a union of $ n$ disjoint open intervals. What is $ n$? $ \textbf{(A)}\ 2 \qquad \textbf{(B)}\ 12 \qquad \textbf{(C)}\ 18 \qquad \textbf{(D)}\ 22 \qquad \textbf{(E)}\ 36$

2009 Rioplatense Mathematical Olympiad, Level 3, 1

Tags: domain , function , algebra
Find all functions $f:\mathbb{R}\to\mathbb{R}$ such that \[f(xy)=\max\{f(x+y),f(x) f(y)\} \] for all real numbers $x$ and $y$.

2005 Romania National Olympiad, 2

Let $f:[0,1)\to (0,1)$ a continous onto (surjective) function. a) Prove that, for all $a\in(0,1)$, the function $f_a:(a,1)\to (0,1)$, given by $f_a(x) = f(x)$, for all $x\in(a,1)$ is onto; b) Give an example of such a function.

2009 Ukraine National Mathematical Olympiad, 3

Point $O$ is inside triangle $ABC$ such that $\angle AOB = \angle BOC = \angle COA = 120^\circ .$ Prove that \[\frac{AO^2}{BC}+\frac{BO^2}{CA}+\frac{CO^2}{AB} \geq \frac{AO+BO+CO}{\sqrt 3}.\]

2001 Bundeswettbewerb Mathematik, 4

A square $ R$ of sidelength $ 250$ lies inside a square $ Q$ of sidelength $ 500$. Prove that: One can always find two points $ A$ and $ B$ on the perimeter of $ Q$ such that the segment $ AB$ has no common point with the square $ R$, and the length of this segment $ AB$ is greater than $ 521$.

2012 Romania National Olympiad, 2

[color=darkred]Find all functions $f:\mathbb{R}\to\mathbb{R}$ with the following property: for any open bounded interval $I$, the set $f(I)$ is an open interval having the same length with $I$ .[/color]

1960 Czech and Slovak Olympiad III A, 4

Determine the (real) domain of a function $$y=\sqrt{1-\frac{x}{4}|x|+\sqrt{1-\frac{x}{2}|x|\,}\,}-\sqrt{1-\frac{x}{4}|x|-\sqrt{1-\frac{x}{2}|x|\,}\,}$$ and draw its graph.

1991 Arnold's Trivium, 22

Tags: domain , function , algebra
Investigate the boundary of the domain of stability ($\max \text{Re }\lambda_j < 0$) in the space of coefficients of the equation $\dddot{x} + a\ddot{x} + b\dot{x} + cx = 0$.

2022 Taiwan TST Round 3, 4

Let $\mathcal{X}$ be the collection of all non-empty subsets (not necessarily finite) of the positive integer set $\mathbb{N}$. Determine all functions $f: \mathcal{X} \to \mathbb{R}^+$ satisfying the following properties: (i) For all $S$, $T \in \mathcal{X}$ with $S\subseteq T$, there holds $f(T) \le f(S)$. (ii) For all $S$, $T \in \mathcal{X}$, there hold \[f(S) + f(T) \le f(S + T),\quad f(S)f(T) = f(S\cdot T), \] where $S + T = \{s + t\mid s\in S, t\in T\}$ and $S \cdot T = \{s\cdot t\mid s\in S, t\in T\}$. [i]Proposed by Li4, Untro368, and Ming Hsiao.[/i]

2014 USAMO, 1

Let $a$, $b$, $c$, $d$ be real numbers such that $b-d \ge 5$ and all zeros $x_1, x_2, x_3,$ and $x_4$ of the polynomial $P(x)=x^4+ax^3+bx^2+cx+d$ are real. Find the smallest value the product $(x_1^2+1)(x_2^2+1)(x_3^2+1)(x_4^2+1)$ can take.

1984 AIME Problems, 7

The function $f$ is defined on the set of integers and satisfies \[ f(n)=\begin{cases} n-3 & \text{if } n\ge 1000 \\ f(f(n+5)) & \text{if } n<1000\end{cases} \] Find $f(84)$.

2014 AIME Problems, 12

Let $A=\{1,2,3,4\}$, and $f$ and $g$ be randomly chosen (not necessarily distinct) functions from $A$ to $A$. The probability that the range of $f$ and the range of $g$ are disjoint is $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m$.

1969 Canada National Olympiad, 7

Show that there are no integers $a,b,c$ for which $a^2+b^2-8c=6$.

2010 Iran MO (3rd Round), 2

$R$ is a ring such that $xy=yx$ for every $x,y\in R$ and if $ab=0$ then $a=0$ or $b=0$. if for every Ideal $I\subset R$ there exist $x_1,x_2,..,x_n$ in $R$ ($n$ is not constant) such that $I=(x_1,x_2,...,x_n)$, prove that every element in $R$ that is not $0$ and it's not a unit, is the product of finite irreducible elements.($\frac{100}{6}$ points)

2013 AIME Problems, 8

The domain of the function $f(x) = \text{arcsin}(\log_{m}(nx))$ is a closed interval of length $\frac{1}{2013}$, where $m$ and $n$ are positive integers and $m > 1$. Find the remainder when the smallest possible sum $m+n$ is divided by $1000$.

1983 AIME Problems, 3

What is the product of the real roots of the equation \[x^2 + 18x + 30 = 2 \sqrt{x^2 + 18x + 45}\,\,?\]

1976 Miklós Schweitzer, 7

Let $ f_1,f_2,\dots,f_n$ be regular functions on a domain of the complex plane, linearly independent over the complex field. Prove that the functions $ f_i\overline{f}_k, \;1 \leq i,k \leq n$, are also linearly independent. [i]L. Lempert[/i]

Today's calculation of integrals, 769

In $xyz$ space, find the volume of the solid expressed by $x^2+y^2\leq z\le \sqrt{3}y+1.$

2003 AIME Problems, 11

An angle $x$ is chosen at random from the interval $0^\circ < x < 90^\circ$. Let $p$ be the probability that the numbers $\sin^2 x$, $\cos^2 x$, and $\sin x \cos x$ are not the lengths of the sides of a triangle. Given that $p = d/n$, where $d$ is the number of degrees in $\arctan m$ and $m$ and $n$ are positive integers with $m + n < 1000$, find $m + n$.

2012 Kyoto University Entry Examination, 5

Find the domain of the pairs of positive real numbers $(a,\ b)$ such that there is a $\theta\ (0<\theta \leq \pi)$ such that $\cos a\theta =\cos b\theta$, then draw the domain on the coordinate plane. 30 points

2007 Today's Calculation Of Integral, 219

Let $ f(x)\equal{}\left(1\plus{}\frac{1}{x}\right)^{x}\ (x>0)$. Find $ \lim_{n\to\infty}\left\{f\left(\frac{1}{n}\right)f\left(\frac{2}{n}\right)f\left(\frac{3}{n}\right)\cdots\cdots f\left(\frac{n}{n}\right)\right\}^{\frac{1}{n}}$.

1989 AMC 12/AHSME, 28

Find the sum of the roots of $\tan^2x-9\tan x+1=0$ that are between $x=0$ and $x=2\pi$ radians. $ \textbf{(A)}\ \frac{\pi}{2} \qquad\textbf{(B)}\ \pi \qquad\textbf{(C)}\ \frac{3\pi}{2} \qquad\textbf{(D)}\ 3\pi \qquad\textbf{(E)}\ 4\pi $