Found problems: 125
2015 AMC 12/AHSME, 20
For every positive integer $n$, let $\operatorname{mod_5}(n)$ be the remainder obtained when $n$ is divided by $5$. Define a function $f : \{0, 1, 2, 3, \dots\} \times \{0, 1, 2, 3, 4\} \to \{0, 1, 2, 3, 4\}$ recursively as follows:
\[f(i, j) = \begin{cases}
\operatorname{mod_5}(j+1) & \text{if }i=0\text{ and }0\leq j\leq 4 \\
f(i-1, 1) & \text{if }i\geq 1\text{ and }j=0 \text{, and}\\
f(i-1, f(i, j-1)) & \text{if }i\geq 1\text{ and }1\leq j\leq 4
\end{cases}\]
What is $f(2015, 2)$?
$\textbf{(A) }0 \qquad\textbf{(B) }1 \qquad\textbf{(C) }2 \qquad\textbf{(D) }3 \qquad\textbf{(E) }4$
2006 IberoAmerican, 3
Consider a regular $n$-gon with $n$ odd. Given two adjacent vertices $A_{1}$ and $A_{2},$ define the sequence $(A_{k})$ of vertices of the $n$-gon as follows: For $k\ge 3,\, A_{k}$ is the vertex lying on the perpendicular bisector of $A_{k-2}A_{k-1}.$ Find all $n$ for which each vertex of the $n$-gon occurs in this sequence.
2010 Postal Coaching, 4
Five distinct points $A, B, C, D$ and $E$ lie in this order on a circle of radius $r$ and satisfy $AC = BD = CE = r$. Prove that the orthocentres of the triangles $ACD, BCD$ and $BCE$ are the vertices of a right-angled triangle.
1994 China Team Selection Test, 1
Given $5n$ real numbers $r_i, s_i, t_i, u_i, v_i \geq 1 (1 \leq i \leq n)$, let $R = \frac {1}{n} \sum_{i=1}^{n} r_i$, $S = \frac {1}{n} \sum_{i=1}^{n} s_i$, $T = \frac {1}{n} \sum_{i=1}^{n} t_i$, $U = \frac {1}{n} \sum_{i=1}^{n} u_i$, $V = \frac {1}{n} \sum_{i=1}^{n} v_i$. Prove that $\prod_{i=1}^{n}\frac {r_i s_i
t_i u_i v_i + 1}{r_i s_i t_i u_i v_i - 1} \geq \left(\frac {RSTUV +1}{RSTUV - 1}\right)^n$.
2005 Today's Calculation Of Integral, 79
Find the area of the domain expressed by the following system inequalities.
\[x\geq 0,\ y\geq 0,\ x^{\frac{1}{p}}+y^{\frac{1}{p}} \leq 1\ (p=1,2,\cdots)\]
2005 Today's Calculation Of Integral, 11
Calculate the following indefinite integrals.
[1] $\int \frac{6x+1}{\sqrt{3x^2+x+4}}dx$
[2] $\int \frac{e^x}{e^x+e^{a-x}}dx$
[3] $\int \frac{(\sqrt{x}+1)^3}{\sqrt{x}}dx$
[4] $\int x\ln (x^2-1)dx$
[5] $\int \frac{2(x+2)}{x^2+4x+1}dx$
1986 Miklós Schweitzer, 9
Consider a latticelike packing of translates of a convex region $K$. Let $t$ be the area of the fundamental parallelogram of the lattice defining the packing, and let $t_{\min} (K)$ denote the minimal value of $t$ taken for all latticelike packings. Is there a natural number $N$ such that for any $n>N$ and for any $K$ different from a parallelogram, $nt_{\min} (K)$ is smaller that the area of any convex domain in which $n$ translates to $K$ can be placed without overlapping? (By a [i]latticelike packing[/i] of $K$ we mean a set of nonoverlapping translates of $K$ obtained from $K$ by translations with all vectors of a lattice.) [G. and L. Fejes-Toth]
2008 Romania National Olympiad, 3
Let $ f: \mathbb R \to \mathbb R$ be a function, two times derivable on $ \mathbb R$ for which there exist $ c\in\mathbb R$ such that
\[ \frac { f(b)\minus{}f(a) }{b\minus{}a} \neq f'(c) ,\] for all $ a\neq b \in \mathbb R$.
Prove that $ f''(c)\equal{}0$.
2005 Today's Calculation Of Integral, 14
Calculate the following indefinite integrals.
[1] $\int \frac{\sin x\cos x}{1+\sin ^ 2 x}dx$
[2] $\int x\log_{10} x dx$
[3] $\int \frac{x}{\sqrt{2x-1}}dx$
[4] $\int (x^2+1)\ln x dx$
[5] $\int e^x\cos x dx$
2009 AMC 12/AHSME, 25
The first two terms of a sequence are $ a_1 \equal{} 1$ and $ a_2 \equal{} \frac {1}{\sqrt3}$. For $ n\ge1$,
\[ a_{n \plus{} 2} \equal{} \frac {a_n \plus{} a_{n \plus{} 1}}{1 \minus{} a_na_{n \plus{} 1}}.
\]What is $ |a_{2009}|$?
$ \textbf{(A)}\ 0\qquad \textbf{(B)}\ 2 \minus{} \sqrt3\qquad \textbf{(C)}\ \frac {1}{\sqrt3}\qquad \textbf{(D)}\ 1\qquad \textbf{(E)}\ 2 \plus{} \sqrt3$
2021 Latvia Baltic Way TST, P6
Let's call $1 \times 2$ rectangle, which can be a rotated, a domino. Prove that there exists polygon, who can be covered by dominoes in exactly $2021$ different ways.
1963 AMC 12/AHSME, 17
The expression $\dfrac{\dfrac{a}{a+y}+\dfrac{y}{a-y}}{\dfrac{y}{a+y}-\dfrac{a}{a-y}}$, a real, $a\neq 0$, has the value $-1$ for:
$\textbf{(A)}\ \text{all but two real values of }y \qquad
\textbf{(B)}\ \text{only two real values of }y \qquad$
$\textbf{(C)}\ \text{all real values of }y \qquad
\textbf{(D)}\ \text{only one real value of }y \qquad
\textbf{(E)}\ \text{no real values of }y$
2010 Contests, 2
Find all the continuous functions $f : \mathbb{R} \mapsto\mathbb{R}$ such that $\forall x,y \in \mathbb{R}$,
$(1+f(x)f(y))f(x+y)=f(x)+f(y)$.
1981 AMC 12/AHSME, 17
The function $f$ is not defined for $x=0$, but, for all non-zero real numbers $x$, $f(x)+2f\left( \frac1x \right)=3x$. The equation $f(x)=f(-x)$ is satisfied by
$\text{(A)} ~\text{exactly one real number}$
$\text{(B)}~\text{exactly two real numbers}$
$\text{(C)} ~\text{no real numbers}$
$\text{(D)} ~\text{infinitely many, but not all, non-zero real numbers}$
$\text{(E)} ~\text{all non-zero real numbers}$
1983 Miklós Schweitzer, 10
Let $ R$ be a bounded domain of area $ t$ in the plane, and let $ C$ be its center of gravity. Denoting by $ T_{AB}$ the circle drawn with the diameter $ AB$, let $ K$ be a circle that contains each of the circles $ T_{AB} \;(A,B \in R)$. Is it true in general that $ K$ contains the circle of area $ 2t$ centered at $ C$?
[i]J. Szucs[/i]
1991 AIME Problems, 7
Find $A^2$, where $A$ is the sum of the absolute values of all roots of the following equation: \begin{eqnarray*}x &=& \sqrt{19} + \frac{91}{{\displaystyle \sqrt{19}+\frac{91}{{\displaystyle \sqrt{19}+\frac{91}{{\displaystyle \sqrt{19}+\frac{91}{{\displaystyle \sqrt{19}+\frac{91}{x}}}}}}}}}\end{eqnarray*}
1993 AMC 12/AHSME, 26
Find the largest positive value attained by the function
\[ f(x)=\sqrt{8x-x^2}-\sqrt{14x-x^2-48}, \qquad x\ \text{a real number} \]
$ \textbf{(A)}\ \sqrt{7}-1 \qquad\textbf{(B)}\ 3 \qquad\textbf{(C)}\ 2\sqrt{3} \qquad\textbf{(D)}\ 4 \qquad\textbf{(E)}\ \sqrt{55}-\sqrt{5} $
1962 Putnam, A2
Find every real-valued function $f$ whose domain is an interval $I$ (finite or infinite) having $0$ as a left-hand endpoint, such that for every positive $x\in I$ the average of $f$ over the closed interval $[0,x]$ is equal to $\sqrt{ f(0) f(x)}.$
1995 Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Round 2, 1
The numbers from 1 to 1996 are written down ------ 12345678910111213.... How many zeros are written?
A. 489
B. 699
C. 796
D. 996
E. None of these
1982 AMC 12/AHSME, 29
Let $ x$,$ y$, and $ z$ be three positive real numbers whose sum is $ 1$. If no one of these numbers is more than twice any other, then the minimum possible value of the product $ xyz$ is
$ \textbf{(A)}\ \frac{1}{32}\qquad
\textbf{(B)}\ \frac{1}{36}\qquad
\textbf{(C)}\ \frac{4}{125}\qquad
\textbf{(D)}\ \frac{1}{127}\qquad
\textbf{(E)}\ \text{none of these}$
2010 Contests, 3
Find all the functions $f:\mathbb{N}\to\mathbb{R}$ that satisfy
\[ f(x+y)=f(x)+f(y) \] for all $x,y\in\mathbb{N}$ satisfying $10^6-\frac{1}{10^6} < \frac{x}{y} < 10^6+\frac{1}{10^6}$.
Note: $\mathbb{N}$ denotes the set of positive integers and $\mathbb{R}$ denotes the set of real numbers.
1973 Putnam, B6
On the domain $0\leq \theta \leq 2\pi:$
(a) Prove that $\sin^{2}\theta \cdot \sin 2\theta$ takes its maximum at $\frac{\pi}{3}$ and $\frac{4 \pi}{3}$ (and hence its minimum at $\frac{2 \pi}{3}$ and $\frac{ 5 \pi}{3}$).
(b) Show that
$$| \sin^{2} \theta \cdot \sin^{3} 2\theta \cdot \sin^{3} 4 \theta \cdots \sin^{3} 2^{n-1} \theta \cdot \sin 2^{n} \theta |$$
takes its maximum at $\frac{4 \pi}{3}$ (the maximum may also be attained at other points).
(c) Derive the inequality:
$$ \sin^{2} \theta \cdot \sin^{2} 2\theta \cdots \sin^{2} 2^{n} \theta \leq \left( \frac{3}{4} \right)^{n}.$$
2010 Rioplatense Mathematical Olympiad, Level 3, 3
Find all the functions $f:\mathbb{N}\to\mathbb{R}$ that satisfy
\[ f(x+y)=f(x)+f(y) \] for all $x,y\in\mathbb{N}$ satisfying $10^6-\frac{1}{10^6} < \frac{x}{y} < 10^6+\frac{1}{10^6}$.
Note: $\mathbb{N}$ denotes the set of positive integers and $\mathbb{R}$ denotes the set of real numbers.
2002 Czech and Slovak Olympiad III A, 1
Solve the system
\[(4x)_5+7y=14 \\ (2y)_5 -(3x)_7=74\]
in the domain of integers, where $(n)_k$ stands for the multiple of the number $k$ closest to the number $n$.
2010 Romania Team Selection Test, 4
Let $n$ be an integer number greater than or equal to $2$, and let $K$ be a closed convex set of area greater than or equal to $n$, contained in the open square $(0, n) \times (0, n)$. Prove that $K$ contains some point of the integral lattice $\mathbb{Z} \times \mathbb{Z}$.
[i]Marius Cavachi[/i]