This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 67

1982 Swedish Mathematical Competition, 3

Show that there is a point $P$ inside the quadrilateral $ABCD$ such that the triangles $PAB$, $PBC$, $PCD$, $PDA$ have equal area. Show that $P$ must lie on one of the diagonals.

2020 Yasinsky Geometry Olympiad, 3

A trapezoid $ABCD$ with bases $BC$ and $AD$ is given. The points $K$ and $L$ are chosen on the sides $AB$ and $CD$, respectively, so that $KL \parallel AD$. It turned out that the areas of the quadrilaterals $AKLD$ and $KBCL$ are equal. Find the length $KL$ if $BC = 3, AD = 5$.

1984 Tournament Of Towns, (075) T1

In convex hexagon $ABCDEF, AB$ is parallel to $CF, CD$ is parallel to $BE$ and $EF$ is parallel to $AD$. Prove that the areas of triangles $ACE$ and $BDF$ are equal .

1958 Kurschak Competition, 3

The hexagon $ABCDEF$ is convex and opposite sides are parallel. Show that the triangles $ACE$ and $BDF$ have equal area

1985 Tournament Of Towns, (088) 4

A square is divided into $5$ rectangles in such a way that its $4$ vertices belong to $4$ of the rectangles , whose areas are equal , and the fifth rectangle has no points in common with the side of the square (see diagram) . Prove that the fifth rectangle is a square. [img]https://3.bp.blogspot.com/-TQc1v_NODek/XWHHgmONboI/AAAAAAAAKi4/XES55OJS5jY9QpNmoURp4y80EkanNzmMwCK4BGAYYCw/s1600/TOT%2B1985%2BSpring%2BJ4.png[/img]

2007 Bulgarian Autumn Math Competition, Problem 8.2

Let $ABCD$ be a convex quadrilateral. Determine all points $M$, which lie inside $ABCD$, such that the areas of $ABCM$ and $AMCD$ are equal.

1983 All Soviet Union Mathematical Olympiad, 363

The points $A_1,B_1,C_1$ belong to $[BC],[CA],[AB]$ sides of the $ABC$ triangle respectively. The $[AA_1], [BB_1], [CC_1]$ segments split the $ABC$ onto $4$ smaller triangles and $3$ quadrangles. It is known, that the smaller triangles have the same area. Prove that the quadrangles have equal areas. What is the quadrangle area, it the small triangle has the unit area?

1993 Romania Team Selection Test, 3

Suppose that each of the diagonals $AD,BE,CF$ divides the hexagon $ABCDEF$ into two parts of the same area and perimeter. Does the hexagon necessarily have a center of symmetry?

2006 Peru MO (ONEM), 2

Find all values of $k$ by which it is possible to divide any triangular region in $k$ quadrilaterals of equal area.

May Olympiad L1 - geometry, 1996.1

A terrain ( $ABCD$ ) has a rectangular trapezoidal shape. The angle in $A$ measures $90^o$. $AB$ measures $30$ m, $AD$ measures $20$ m and $DC$ measures 45 m. This land must be divided into two areas of the same area, drawing a parallel to the $AD$ side . At what distance from $D$ do we have to draw the parallel? [img]https://1.bp.blogspot.com/-DnyNY3x4XKE/XNYvRUrLVTI/AAAAAAAAKLE/gohd7_S9OeIi-CVUVw-iM63uXE5u-WmGwCK4BGAYYCw/s400/image002.gif[/img]

2008 Bulgarian Autumn Math Competition, Problem 11.2

On the sides $AB$ and $AC$ of the right $\triangle ABC$ ($\angle A=90^{\circ}$) are chosen points $C_{1}$ and $B_{1}$ respectively. Prove that if $M=CC_{1}\cap BB_{1}$ and $AC_{1}=AB_{1}=AM$, then $[AB_{1}MC_{1}]+[AB_{1}C_{1}]=[BMC]$.

1988 Tournament Of Towns, (165) 2

We are given convex quadrilateral $ABCD$. The midpoints of $BC$ and $DA$ are $M$ and $N$ respectively. The diagonal $AC$ divides $MN$ in half. Prove that the areas of triangles $ABC$ and $ACD$ are equal .

2011 Saudi Arabia BMO TST, 3

In an acute triangle $ABC$ the angle bisector $AL$, $L \in BC$, intersects its circumcircle at $N$. Let $K$ and $M$ be the projections of $L$ onto sides $AB$ and $AC$. Prove that triangle $ABC$ and quadrilateral $A K N M$ have equal areas.

2004 Olympic Revenge, 1

$ABC$ is a triangle and $D$ is an internal point such that $\angle DAB=\angle DBC =\angle DCA$. $O_a$ is the circumcenter of $DBC$. $O_b$ is the circumcenter of $DAC$. $O_c$ is the circumcenter of $DAB$. Show that if the area of $ABC$ and $O_aO_bO_c$ are equal then $ABC$ is equilateral.

1996 May Olympiad, 1

A terrain ( $ABCD$ ) has a rectangular trapezoidal shape. The angle in $A$ measures $90^o$. $AB$ measures $30$ m, $AD$ measures $20$ m and $DC$ measures 45 m. This land must be divided into two areas of the same area, drawing a parallel to the $AD$ side . At what distance from $D$ do we have to draw the parallel? [img]https://1.bp.blogspot.com/-DnyNY3x4XKE/XNYvRUrLVTI/AAAAAAAAKLE/gohd7_S9OeIi-CVUVw-iM63uXE5u-WmGwCK4BGAYYCw/s400/image002.gif[/img]

2007 Estonia Math Open Junior Contests, 2

The sides $AB, BC, CD$ and $DA$ of the convex quadrilateral $ABCD$ have midpoints $E, F, G$ and $H$. Prove that the triangles $EFB, FGC, GHD$ and $HEA$ can be put together into a parallelogram equal to $EFGH$.

2009 Balkan MO Shortlist, G5

Let $ABCD$ be a convex quadrilateral and $S$ an arbitrary point in its interior. Let also $E$ be the symmetric point of $S$ with respect to the midpoint $K$ of the side $AB$ and let $Z$ be the symmetric point of $S$ with respect to the midpoint $L$ of the side $CD$. Prove that $(AECZ) = (EBZD) = (ABCD)$.