This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 296

2007 Hanoi Open Mathematics Competitions, 7

Nine points, no three of which lie on the same straight line, are located inside an equilateral triangle of side $4$. Prove that some three of these points are vertices of a triangle whose area is not greater than $\sqrt3$.

2011 Saudi Arabia BMO TST, 3

Consider a triangle $ABC$. Let $A_1$ be the symmetric point of $A$ with respect to the line $BC$, $B_1$ the symmetric point of $B$ with respect to the line $CA$, and $C_1$ the symmetric point of $C$ with respect to the line $AB$. Determine the possible set of angles of triangle $ABC$ for which $A_1B_1C_1$ is equilateral.

2017 BMT Spring, 13

$4$ equilateral triangles of side length $1$ are drawn on the interior of a unit square, each one of which shares a side with one of the $4$ sides of the unit square. What is the common area enclosed by all $4$ equilateral triangles?

2013 Tournament of Towns, 3

Let $ABC$ be an equilateral triangle with centre $O$. A line through $C$ meets the circumcircle of triangle $AOB$ at points $D$ and $E$. Prove that points $A, O$ and the midpoints of segments $BD, BE$ are concyclic.

2023 Adygea Teachers' Geometry Olympiad, 4

In the equilateral triangle $ABC$ ($AB = 2$), cevians are drawn that do not intersect at one point. It turned out that the pairwise intersection points of these cevians lie on the inscribed circle of triangle $ABC$. Find the length of the cevian segment from the vertex of the triangle to the nearest point of intersection with the circle.

1981 All Soviet Union Mathematical Olympiad, 309

Three equilateral triangles $ABC, CDE, EHK$ (the vertices are mentioned counterclockwise) are lying in the plane so, that the vectors $\overrightarrow{AD}$ and $\overrightarrow{DK}$ are equal. Prove that the triangle $BHD$ is also equilateral

2003 Cuba MO, 3

Let $ABC$ be an acute triangle and $T$ be a point interior to this triangle. that $\angle ATB = \angle BTC = \angle CTA$. Let $M,N$ and $P$ be the feet of the perpendiculars from $T$ to $BC$, $CA$ and $AB$ respectively. Prove that if the circle circumscribed around $\vartriangle MNP$ cuts again the sides $ BC$, $CA$ and $AB$ in $M_1$, $N_1$, $P_1$ respectively, then the $\vartriangle M_1N_1P_1$ It is equilateral.

2015 Costa Rica - Final Round, G1

Points $A, B, C$ are vertices of an equilateral triangle inscribed in a circle. Point $D$ lies on the shorter arc $\overarc {AB}$ . Prove that $AD + BD = DC$.

1996 Estonia National Olympiad, 3

An equilateral triangle of side$ 1$ is rotated around its center, yielding another equilareral triangle. Find the area of the intersection of these two triangles.

1940 Moscow Mathematical Olympiad, 063

Points $A, B, C$ are vertices of an equilateral triangle inscribed in a circle. Point $D$ lies on the shorter arc $\overarc {AB}$ . Prove that $AD + BD = DC$.

2016 Novosibirsk Oral Olympiad in Geometry, 6

An arbitrary point $M$ inside an equilateral triangle $ABC$ was connected to vertices. Prove that on each side the triangle can be selected one point at a time so that the distances between them would be equal to $AM, BM, CM$.

1999 Junior Balkan Team Selection Tests - Moldova, 4

Let $ABC$ be an equilateral triangle of area $1998$ cm$^2$. Points $K, L, M$ divide the segments $[AB], [BC] ,[CA]$, respectively, in the ratio $3:4$ . Line $AL$ intersects the lines $CK$ and $BM$ respectively at the points $P$ and $Q$, and the line $BM$ intersects the line $CK$ at point $R$. Find the area of the triangle $PQR$.

2022 Durer Math Competition Finals, 1

To the exterior of side $AB$ of square $ABCD$, we have drawn the regular triangle $ABE$. Point $A$ reflected on line $BE$ is $F$, and point $E$ reflected on line $BF$ is $G$. Let the perpendicular bisector of segment $FG$ meet segment $AD$ at $X$. Show that the circle centered at $X$ with radius $XA$ touches line$ FB$.

2020 BMT Fall, 11

Equilateral triangle $ABC$ has side length $2$. A semicircle is drawn with diameter $BC$ such that it lies outside the triangle, and minor arc $BC$ is drawn so that it is part of a circle centered at $A$. The area of the “lune” that is inside the semicircle but outside sector $ABC$ can be expressed in the form $\sqrt{p}-\frac{q\pi}{r}$, where $p, q$, and $ r$ are positive integers such that $q$ and $r$ are relatively prime. Compute $p + q + r$. [img]https://cdn.artofproblemsolving.com/attachments/7/7/f349a807583a83f93ba413bebf07e013265551.png[/img]

2004 Junior Balkan Team Selection Tests - Romania, 2

Let $M,N, P$ be the midpoints of the sides $BC,CA,AB$ of the triangle $ABC$, respectively, and let $G$ be the centroid of the triangle. Prove that if $BMGP$ is cyclic and $2BN = \sqrt3 AB$ , then triangle $ABC$ is equilateral.

1990 All Soviet Union Mathematical Olympiad, 518

An equilateral triangle of side $n$ is divided into $n^2$ equilateral triangles of side $1$. A path is drawn along the sides of the triangles which passes through each vertex just once. Prove that the path makes an acute angle at at least $n$ vertices.

2013 Peru MO (ONEM), 3

Let $P$ be a point inside the equilateral triangle $ABC$ such that $6\angle PBC = 3\angle PAC = 2\angle PCA$. Find the measure of the angle $\angle PBC$ .

2014 Oral Moscow Geometry Olympiad, 5

Given a regular triangle $ABC$, whose area is $1$, and the point $P$ on its circumscribed circle. Lines $AP, BP, CP$ intersect, respectively, lines $BC, CA, AB$ at points $A', B', C'$. Find the area of the triangle $A'B'C'$.

1992 Chile National Olympiad, 4

Given three parallel lines, prove that there are three points, one on each line, which are the vertices of an equilateral triangle.

2000 German National Olympiad, 3

Suppose that an interior point $O$ of a triangle $ABC$ is such that the angles $\angle BAO,\angle CBO, \angle ACO$ are all greater than or equal to $30^o$. Prove that the triangle $ABC$ is equilateral.

2010 Thailand Mathematical Olympiad, 4

Let $\vartriangle ABC$ be an equilateral triangle, and let $M$ and $N$ be points on $AB$ and $AC$, respectively, so that $AN = BM$ and $3MB = AB$. Lines $CM$ and $BN$ intersect at $O$. Find $\angle AOB$.