This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 86

2015 Dutch IMO TST, 3

An equilateral triangle $ABC$ is given. On the line through $B$ parallel to $AC$ there is a point $D$, such that $D$ and $C$ are on the same side of the line $AB$. The perpendicular bisector of $CD$ intersects the line $AB$ in $E$. Prove that triangle $CDE$ is equilateral.

2014 Contests, 2

Let $\Delta A_1A_2A_3, \Delta B_1B_2B_3, \Delta C_1C_2C_3$ be three equilateral triangles. The vertices in each triangle are numbered [u]clockwise[/u]. It is given that $A_3=B_3=C_3$. Let $M$ be the center of mass of $\Delta A_1B_1C_1$, and let $N$ be the center of mass of $\Delta A_2B_2C_2$. Prove that $\Delta A_3MN$ is an equilateral triangle.

1999 May Olympiad, 4

Let $ABC$ be an equilateral triangle. $M$ is the midpoint of segment $AB$ and $N$ is the midpoint of segment $BC$. Let $P$ be the point outside $ABC$ such that the triangle $ACP$ is isosceles and right in $P$. $PM$ and $AN$ are cut in $I$. Prove that $CI$ is the bisector of the angle $MCA$ .

1993 Rioplatense Mathematical Olympiad, Level 3, 3

Given three points $A, B$ and $C$ (not collinear) construct the equilateral triangle of greater perimeter such that each of its sides passes through one of the given points.

1986 IMO Longlists, 14

Given a point $P_0$ in the plane of the triangle $A_1A_2A_3$. Define $A_s=A_{s-3}$ for all $s\ge4$. Construct a set of points $P_1,P_2,P_3,\ldots$ such that $P_{k+1}$ is the image of $P_k$ under a rotation center $A_{k+1}$ through an angle $120^o$ clockwise for $k=0,1,2,\ldots$. Prove that if $P_{1986}=P_0$, then the triangle $A_1A_2A_3$ is equilateral.

2012 Bundeswettbewerb Mathematik, 3

An equilateral triangle $DCE$ is placed outside a square $ABCD$. The center of this triangle is denoted as $M$ and the intersection of the straight line $AC$ and $BE$ with $S$. Prove that the triangle $CMS$ is isosceles.

1995 Korea National Olympiad, Problem 3

Let $ABC$ be an equilateral triangle of side $1$, $D$ be a point on $BC$, and $r_1, r_2$ be the inradii of triangles $ABD$ and $ADC$. Express $r_1r_2$ in terms of $p = BD$ and find the maximum of $r_1r_2$.

2016 Romanian Master of Mathematics Shortlist, C2

A frog trainer places one frog at each vertex of an equilateral triangle $ABC$ of unit sidelength. The trainer can make one frog jump over another along the line joining the two, so that the total length of the jump is an even multiple of the distance between the two frogs just before the jump. Let $M$ and $N$ be two points on the rays $AB$ and $AC$, respectively, emanating from $A$, such that $AM = AN = \ell$, where $\ell$ is a positive integer. After a fi nite number of jumps, the three frogs all lie in the triangle $AMN$ (inside or on the boundary), and no more jumps are performed. Determine the number of final positions the three frogs may reach in the triangle $AMN$. (During the process, the frogs may leave the triangle $AMN$, only their nal positions are to be in that triangle.)

2005 Sharygin Geometry Olympiad, 9

Let $O$ be the center of a regular triangle $ABC$. From an arbitrary point $P$ of the plane, the perpendiculars were drawn on the sides of the triangle. Let $M$ denote the intersection point of the medians of the triangle , having vertices the feet of the perpendiculars. Prove that $M$ is the midpoint of the segment $PO$.

2021 Bolivian Cono Sur TST, 1

Inside a rhombus $ABCD$ with $\angle BAD=60$, points $F,H,G$ are choosen on lines $AD,DC,AC$ respectivily such that $DFGH$ is a paralelogram. Show that $BFH$ is a equilateral triangle.

2014 Israel National Olympiad, 2

Let $\Delta A_1A_2A_3, \Delta B_1B_2B_3, \Delta C_1C_2C_3$ be three equilateral triangles. The vertices in each triangle are numbered [u]clockwise[/u]. It is given that $A_3=B_3=C_3$. Let $M$ be the center of mass of $\Delta A_1B_1C_1$, and let $N$ be the center of mass of $\Delta A_2B_2C_2$. Prove that $\Delta A_3MN$ is an equilateral triangle.