Found problems: 95
Kyiv City MO Seniors 2003+ geometry, 2007.11.5
The points $A$ and $P$ are marked on the plane. Consider all such points $B, C $ of this plane that $\angle ABP = \angle MAB$ and $\angle ACP = \angle MAC $, where $M$ is the midpoint of the segment $BC$. Prove that all the circumscribed circles around the triangle $ABC$ for different points $B$ and $C$ pass through some fixed point other than the point $A$.
(Alexei Klurman)
2009 Ukraine Team Selection Test, 8
Two circles $\gamma_1, \gamma_2$ are given, with centers at points $O_1, O_2$ respectively. Select a point $K$ on circle $\gamma_2$ and construct two circles, one $\gamma_3$ that touches circle $\gamma_2$ at point $K$ and circle $\gamma_1$ at a point $A$, and the other $\gamma_4$ that touches circle $\gamma_2$ at point $K$ and circle $\gamma_1$ at a point $B$. Prove that, regardless of the choice of point K on circle $\gamma_2$, all lines $AB$ pass through a fixed point of the plane.
VI Soros Olympiad 1999 - 2000 (Russia), 10.5
Two different points $A$ and $B$ have been marked on the circle $\omega$. We consider all points $X$ of the circle $\omega$, different from $A$ and $B$. Let $Y$ be the middpoint of the chord $AX$ and $Z$ be the projection of point $A$ on the line $BX$. Prove that all straight lines $YZ$ pass through a certain fixed point that does not depend on the choice of point $X$.
1985 Traian Lălescu, 2.3
Let $ X $ be the power set of set of $ \{ 0\}\cup\mathbb{N} , $ and let be a function $ d:X^2\longrightarrow\mathbb{R} $ defined as
$$ d(U,V)=\sum_{n\in\mathbb{N}}\frac{\chi_U (n) +\chi_V (n) -2\chi_{U\cap V} (n)}{2} , $$
where $ \chi_W (n)=\left\{ \begin{matrix} 1,& n\in W\\ 0,& n\not\in W \end{matrix} \right. ,\quad\forall W\in X,\forall n\in\mathbb{N} . $
[b]a)[/b] Prove that there exists an unique $ V' $ such that $ \lim_{k\to\infty} d\left( \{ k+i|i\in\mathbb{N}\} , V'\right) =0. $
[b]b)[/b] Demonstrate that for all $ V\in X $ there exists a $ v\in\mathbb{N} $ with $ d\left( \left\{ \frac{3}{2} -\frac{1}{2}(-1)^{v} \right\} , V \right) >\frac{1}{k} . $
[b]c)[/b] Let $ f: X\longrightarrow X,\quad f(X)=\left\{ 1+x|x\in X\right\} . $ Calculate $ d\left( f(A),f(B) \right) $ in terms of $ d(A,B) $ and prove that $ f $ admits an unique fixed point.
2006 Victor Vâlcovici, 1
Let be a nondegenerate and closed interval $ I $ of real numbers, a short map $ m:I\longrightarrow I, $ and a sequence of functions $ \left( x_n \right)_{n\ge 1} :I\longrightarrow\mathbb{R} $ such that $ x_1 $ is the identity map and
$$ 2x_{n+1}=x_n+m\circ x_n , $$
for any natural numbers $ n. $ Prove that:
[b]a)[/b] there exists a nondegenerate interval having the property that any point of it is a fixed point for $ m. $
[b]b)[/b] $ \left( x_n \right)_{n\ge 1} $ is pointwise convergent and that its limit function is a short map.
2013 Bogdan Stan, 1
Under composition, let be a group of linear polynomials that admit a fixed point . Show that all polynomials of this group have the same fixed point.
[i]Vasile Pop[/i]
2019 Tournament Of Towns, 3
Two equal non-intersecting wooden disks, one gray and one black, are glued to a plane. A triangle with one gray side and one black side can be moved along the plane so that the disks remain outside the triangle, while the colored sides of the triangle are tangent to the disks of the same color (the tangency points are not the vertices). Prove that the line that contains the bisector of the angle between the gray and black sides always passes through some fixed point of the plane.
(Egor Bakaev, Pavel Kozhevnikov, Vladimir Rastorguev) (Senior version[url=https://artofproblemsolving.com/community/c6h2102856p15209040] here[/url])
Kvant 2023, M2773
The circle $\omega$ lies inside the circle $\Omega$ and touches it internally at $T.$ Let $XY{}$ be a variable chord of the circle $\Omega$ touching $\omega.$ Denote by $X'$ and $Y'$ the midpoints of the arcs $TY{}$ and $TX{}$ which do not contain $X{}$ and $Y{}$ respectively. Prove that all possible lines $X'Y'$ pass through a fixed point.
[i]Proposed by F. Petrov[/i]
2025 Bulgarian Spring Mathematical Competition, 10.2
Let $AB$ be an acute scalene triangle. A point \( D \) varies on its side \( BC \). The points \( P \) and \( Q \) are the midpoints of the arcs \( \widehat{AB} \) and \( \widehat{AC} \) (not containing \( D \)) of the circumcircles of triangles \( ABD \) and \( ACD \), respectively. Prove that the circumcircle of triangle \( PQD \) passes through a fixed point, independent of the choice of \( D \) on \( BC \).
2015 Oral Moscow Geometry Olympiad, 5
A triangle $ABC$ and spheres are given in space $S_1$ and $S_2$, each of which passes through points $A, B$ and $C$. For points $M$ spheres $S_1$ not lying in the plane of triangle $ABC$ are drawn lines $MA, MB$ and $MC$, intersecting the sphere $S_2$ for the second time at points $A_1,B_1$ and $C_1$, respectively. Prove that the planes passing through points $A_1, B_1$ and $C_1$, touch a fixed sphere or pass through a fixed point.
Swiss NMO - geometry, 2019.1
Let $A$ be a point and let k be a circle through $A$. Let $B$ and $C$ be two more points on $k$. Let $X$ be the intersection of the bisector of $\angle ABC$ with $k$. Let $Y$ be the reflection of $A$ wrt point $X$, and $D$ the intersection of the straight line $YC$ with $k$. Prove that point $D$ is independent of the choice of $B$ and $C$ on the circle $k$.
1986 Dutch Mathematical Olympiad, 4
The lines $a$ and $b$ are parallel and the point $A$ lies on $a$. One chooses one circle $\gamma$ through A tangent to $b$ at $B$. $a$ intersects $\gamma$ for the second time at $T$. The tangent line at $T$ of $\gamma$ is called $t$.
Prove that independently of the choice of $\gamma$, there is a fixed point $P$ such that $BT$ passes through $P$.
Prove that independently of the choice of $\gamma$, there is a fixed circle $\delta$ such that $t$ is tangent to $\delta$.
2010 Oral Moscow Geometry Olympiad, 3
On the sides $AB$ and $BC$ of triangle $ABC$, points $M$ and $K$ are taken, respectively, so that $S_{KMC} + S_{KAC}=S_{ABC}$. Prove that all such lines $MK$ pass through one point.
1986 IMO, 2
Given a point $P_0$ in the plane of the triangle $A_1A_2A_3$. Define $A_s=A_{s-3}$ for all $s\ge4$. Construct a set of points $P_1,P_2,P_3,\ldots$ such that $P_{k+1}$ is the image of $P_k$ under a rotation center $A_{k+1}$ through an angle $120^o$ clockwise for $k=0,1,2,\ldots$. Prove that if $P_{1986}=P_0$, then the triangle $A_1A_2A_3$ is equilateral.
1991 Tournament Of Towns, (295) 2
The chord $MN$ on the circle is fixed. For every diameter $AB$ of the circle consider the intersection point $C$ of the lines $AM$ and $BN$ and construct the line $\ell$ passing through $C$ perpendicularly to $AB$. Prove that all the lines $\ell$ pass through a fixed point.
(E. Kulanin, Moscow)
1998 IMC, 3
Given $ 0< c< 1$, we define $f(x) =
\begin{cases}
\frac{x}{c} & x \in [0,c] \\
\frac{1-x}{1-c} & x \in [c, 1]
\end{cases}
$
Let $f^{n}(x)=f(f(...f(x)))$ . Show that for each positive integer $n$, $f^{n}$ has a non-zero finite nunber of fixed points which aren't fixed points of $f^k$ for $k< n$.
1979 IMO Shortlist, 22
Two circles in a plane intersect. $A$ is one of the points of intersection. Starting simultaneously from $A$ two points move with constant speed, each travelling along its own circle in the same sense. The two points return to $A$ simultaneously after one revolution. Prove that there is a fixed point $P$ in the plane such that the two points are always equidistant from $P.$
2023 Iran Team Selection Test, 4
line $l$ through the point $A$ from triangle $ABC$ . Point $X$ is on line $l$.${\omega}_b$ and ${\omega}_c$ are circles that through points $X,A$ and respectively tanget to $AB$ adn $AC$. tangets from $B,C$ respectively to ${\omega}_b$ and ${\omega}_c$ meet them in $Y,Z$. Prove that by changing $X$, the circumcircle of the circle $XYZ$ passes through two fixed points.
[i]Proposed by Ali Zamani [/i]
2025 Bulgarian Winter Tournament, 12.2
In the plane are fixed two internally tangent circles $\omega$ and $\Omega$, so that $\omega$ is inside $\Omega$. Denote their common point by $T$. The point $A \neq T$ moves on $\Omega$ and point $B$ on $\Omega$ is such that $AB$ is tangent to $\omega$. The line through $B$, perpendicular to $AB$, meets the external angle bisector of $\angle ATB$ at $P$. Prove that, as $A$ varies on $\Omega$, the line $AP$ passes through a fixed point.
2021-IMOC, G4
Let $D$ be a point on the side $AC$ of a triangle $ABC$. Suppose that the incircle of triangle $BCD$ intersects $BD$ and $CD$ at $X$, $Y$, respectively. Show that $XY$ passes through a fixed point when $D$ is moving on the side $AC$.
2006 Sharygin Geometry Olympiad, 2
Points $A, B$ move with equal speeds along two equal circles.
Prove that the perpendicular bisector of $AB$ passes through a fixed point.
1998 Slovenia Team Selection Test, 5
On a line $p$ which does not meet a circle $K$ with center $O$, point $P$ is taken such that $OP \perp p$. Let $X \ne P$ be an arbitrary point on $p$. The tangents from $X$ to $K$ touch it at $A$ and $B$. Denote by $C$ and $D$ the orthogonal projections of $P$ on $AX$ and $BX$ respectively.
(a) Prove that the intersection point $Y$ of $AB$ and $OP$ is independent of the location of $X$.
(b) Lines $CD$ and $OP$ meet at $Z$. Prove that $Z$ is the midpoint of $P$.
IV Soros Olympiad 1997 - 98 (Russia), 9.11
Given two circles intersecting at points $A$ and $B$. A certain circle touches the first at point $A$, intersects the second at point $M$ and intersects the straight line $AB$ at point $P$ ($M$ and $P$ are different from $B$). Prove that the straight line $MP$ passes through a fixed point of the plane (for any change in the third circle).
1992 Tournament Of Towns, (347) 5
An angle with vertex $O$ and a point $A$ inside it are placed on a plane. Points $M$ and $N$ are chosen on different sides of the angle so that the angles $CAM$ and $CAN$ are equal. Prove that the straight line $MN$ always passes through a fixed point (or is always parallel to a fixed line).
(S Tokarev)
2019 Tournament Of Towns, 3
Two not necessarily equal non-intersecting wooden disks, one gray and one black, are glued to a plane. An infinite angle with one gray side and one black side can be moved along the plane so that the disks remain outside the angle, while the colored sides of the angle are tangent to the disks of the same color (the tangency points are not the vertices). Prove that it is possible to draw a ray in the angle, starting from the vertex of the angle and such that no matter how the angle is positioned, the ray passes through some fixed point of the plane.
(Egor Bakaev, Ilya Bogdanov, Pavel Kozhevnikov, Vladimir Rastorguev) (Junior version [url=https://artofproblemsolving.com/community/c6h2094701p15140671]here[/url])
[hide=note]There was a mistake in the text of the problem 3, we publish here the correct version. The solutions were estimated according to the text published originally.[/hide]