This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2022 VTRMC, 6

Let $f : \mathbb{R} \to \mathbb{R}$ be a function whose second derivative is continuous. Suppose that $f$ and $f''$ are bounded. Show that $f'$ is also bounded.

1990 National High School Mathematics League, 2

Tags: function
$f(x)$ is a periodic even function defined on $\mathbb{R}$, with period of $2$. When $x\in[2,3]$, $f(x)=x$. Then what's $f(x)$ if $x\in[-2,0]$? $\text{(A)}f(x)=x+4\qquad\text{(B)}f(x)=2-x\qquad\text{(C)}f(x)=3-|x+1|\qquad\text{(D)}f(x)=2+|x+1|$

2023 Brazil EGMO Team Selection Test, 1

Let $\mathbb{Z}_{>0} = \{1, 2, 3, \ldots \}$ be the set of all positive integers. Find all strictly increasing functions $f : \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ such that $f(f(n)) = 3n$.

1985 Miklós Schweitzer, 7

Let $p_1$ and $p_2$ be positive real numbers. Prove that there exist functions $f_i\colon \mathbb R \rightarrow \mathbb R$ such that the smallest positive period of $f_i$ is $p_i\, (i=1, 2)$, and $f_1-f_2$ is also periodic. [J. Riman]

2024 Romania National Olympiad, 3

Let $n \ge 2$ be a positive integer and $\mathcal{F}$ the set of functions $f:\{1,2,\ldots,n\} \to \{1,2,\ldots,n\}$ that satisfy $f(k) \le f(k+1) \le f(k)+1,$ for all $k \in \{1,2,\ldots,n-1\}.$ a) Find the cardinal of the set $\mathcal{F}.$ b) Find the total number of fixed points of the functions in $\mathcal{F}.$

2015 IMO Shortlist, N8

For every positive integer $n$ with prime factorization $n = \prod_{i = 1}^{k} p_i^{\alpha_i}$, define \[\mho(n) = \sum_{i: \; p_i > 10^{100}} \alpha_i.\] That is, $\mho(n)$ is the number of prime factors of $n$ greater than $10^{100}$, counted with multiplicity. Find all strictly increasing functions $f: \mathbb{Z} \to \mathbb{Z}$ such that \[\mho(f(a) - f(b)) \le \mho(a - b) \quad \text{for all integers } a \text{ and } b \text{ with } a > b.\] [i]Proposed by Rodrigo Sanches Angelo, Brazil[/i]

2009 Thailand Mathematical Olympiad, 2

Is there an injective function $f : Z^+ \to Q$ satisfying the equation $f(xy) = f(x) + f(y)$ for all positive integers $x$ and $y$?

2011 Romania National Olympiad, 2

Let be a continuous function $ f:[0,1]\longrightarrow\left( 0,\infty \right) $ having the property that, for any natural number $ n\ge 2, $ there exist $ n-1 $ real numbers $ 0<t_1<t_2<\cdots <t_{n-1}<1, $ such that $$ \int_0^{t_1} f(t)dt=\int_{t_1}^{t_2} f(t)dt=\int_{t_2}^{t_3} f(t)dt=\cdots =\int_{t_{n-2}}^{t_{n-1}} f(t)dt=\int_{t_{n-1}}^{1} f(t)dt. $$ Calculate $ \lim_{n\to\infty } \frac{n}{\frac{1}{f(0)} +\sum_{i=1}^{n-1} \frac{1}{f\left( t_i \right)} +\frac{1}{f(1)}} . $

1995 IberoAmerican, 3

A function $f: \N\rightarrow\N$ is circular if for every $p\in\N$ there exists $n\in\N,\ n\leq{p}$ such that $f^n(p)=p$ ($f$ composed with itself $n$ times) The function $f$ has repulsion degree $k>0$ if for every $p\in\N$ $f^i(p)\neq{p}$ for every $i=1,2,\dots,\lfloor{kp}\rfloor$. Determine the maximum repulsion degree can have a circular function. [b]Note:[/b] Here $\lfloor{x}\rfloor$ is the integer part of $x$.

2000 IMC, 2

Let $f$ be continuous and nowhere monotone on $[0,1]$. Show that the set of points on which $f$ obtains a local minimum is dense.

2014 ELMO Shortlist, 4

Tags: algebra , function
Find all triples $(f,g,h)$ of injective functions from the set of real numbers to itself satisfying \begin{align*} f(x+f(y)) &= g(x) + h(y) \\ g(x+g(y)) &= h(x) + f(y) \\ h(x+h(y)) &= f(x) + g(y) \end{align*} for all real numbers $x$ and $y$. (We say a function $F$ is [i]injective[/i] if $F(a)\neq F(b)$ for any distinct real numbers $a$ and $b$.) [i]Proposed by Evan Chen[/i]

2002 Miklós Schweitzer, 9

Let $M$ be a connected, compact $C^{\infty}$-differentiable manifold, and denote the vector space of smooth real functions on $M$ by $C^{\infty}(M)$. Let the subspace $V\le C^{\infty}(M)$ be invariant under $C^{\infty}$-diffeomorphisms of $M$, that is, let $f\circ h\in V$ for every $f\in V$ and for every $C^{\infty}$-diffeomorphism $h\colon M\rightarrow M$. Prove that if $V$ is different from the subspaces $\{ 0\}$ and $C^{\infty}(M)$ then $V$ only contains the constant functions.

2007 Today's Calculation Of Integral, 242

A cubic function $ y \equal{} ax^3 \plus{} bx^2 \plus{} cx \plus{} d\ (a\neq 0)$ touches a line $ y \equal{} px \plus{} q$ at $ x \equal{} \alpha$ and intersects $ x \equal{} \beta \ (\alpha \neq \beta)$. Find the area of the region bounded by these graphs in terms of $ a,\ \alpha ,\ \beta$.

1995 VJIMC, Problem 3

Tags: function
Let $f(x)$ and $g(x)$ be mutually inverse decreasing functions on the interval $(0,\infty)$. Can it hold that $f(x)>g(x)$ for all $x\in(0,\infty)$?

The Golden Digits 2024, P2

Find all the functions $\varphi:\mathbb{Z}[x]\to\mathbb{Z}[x]$ such that $\varphi(x)=x,$ any integer polynomials $f, g$ satisfy $\varphi(f+g)=\varphi(f)+\varphi(g)$ and $\varphi(f)$ is a perfect power if and only if $f{}$ is a perfect power. [i]Note:[/i] A polynomial $f\in \mathbb{Z}[x]$ is a perfect power if $f = g^n$ for some $g\in \mathbb{Z}[x]$ and $n\geqslant 2.$ [i]Proposed by Pavel Ciurea[/i]

PEN K Problems, 17

Find all functions $h: \mathbb{Z}\to \mathbb{Z}$ such that for all $x,y\in \mathbb{Z}$: \[h(x+y)+h(xy)=h(x)h(y)+1.\]

2018 Korea USCM, 6

Suppose a continuous function $f:[0,1]\to\mathbb{R}$ is differentiable on $(0,1)$ and $f(0)=1$, $f(1)=0$. Then, there exists $0<x_0<1$ such that $$|f'(x_0)| \geq 2018 f(x_0)^{2018}$$

2014 Contests, 1

Find the smallest possible value of the expression \[\left\lfloor\frac{a+b+c}{d}\right\rfloor+\left\lfloor\frac{b+c+d}{a}\right\rfloor+\left\lfloor\frac{c+d+a}{b}\right\rfloor+\left\lfloor\frac{d+a+b}{c}\right\rfloor\] in which $a,~ b,~ c$, and $d$ vary over the set of positive integers. (Here $\lfloor x\rfloor$ denotes the biggest integer which is smaller than or equal to $x$.)

2005 Gheorghe Vranceanu, 3

Let be a continuous function $ f:\mathbb{R}\longrightarrow\mathbb{R} $ having a positive period $ T. $ Prove that: $$ \lim_{n\to\infty } e^{-nT}\int_0^{nT} e^tf(t)dt=\frac{1}{e^T-1}\int_0^T e^tf(t)dt $$

2007 China Team Selection Test, 3

Prove that for any positive integer $ n$, there exists only $ n$ degree polynomial $ f(x),$ satisfying $ f(0) \equal{} 1$ and $ (x \plus{} 1)[f(x)]^2 \minus{} 1$ is an odd function.

1986 IMO Longlists, 78

If $T$ and $T_1$ are two triangles with angles $x, y, z$ and $x_1, y_1, z_1$, respectively, prove the inequality \[\frac{\cos x_1}{\sin x}+\frac{\cos y_1}{\sin y}+\frac{\cos z_1}{\sin z} \leq \cot x+\cot y+\cot z.\]

2017 Harvard-MIT Mathematics Tournament, 3

Let $f: \mathbb{R}\rightarrow \mathbb{R}$ be a function satisfying $f(x)f(y)=f(x-y)$. Find all possible values of $f(2017)$.

2007 Mathematics for Its Sake, 3

Let be three positive real numbers $ a,b,c, $ a natural number $ n, $ and the functions $ f:\mathbb{R}\longrightarrow\mathbb{R} ,g:(0,\infty )\longrightarrow\mathbb{R} $ defined as: $$ f(x)=\frac{2(n+1)x^n(x^{n+1}-a) +nx^{n+1} +2a^2x+a}{x^{2n+2}-2ax^{n+1} +a^2x^2+a^2} , $$ $$ g(x)=\frac{a+bx^n}{x+cx^{2n+1}} $$ Calculate the antiderivatives of $ f $ and $ g. $ [i]Nicolae Sanda[/i]

1989 Tournament Of Towns, (219) 3

Given $1000$ linear functions $f_k(x)=p_k x + q_k$ where $k = 1 , 2 ,... , 1000$, it is necessary to evaluate their composite $f(x) =f_1 (f_2(f_3 ... f_{1000}(x)...))$ at the point $x_0$ . Prove that this can be done in no more than $30$ steps, where at each step one may execute simultaneously any number of arithmetic operations on pairs of numbers obtained from the previous step (at the first step one may use the numbers $p_1 , p_2 ,... ,p_{1000}, q_l , q_2 ,... ,q_{1000} , x_o$). {S. Fomin, Leningrad)

2022 VJIMC, 1

Determine whether there exists a differentiable function $f:[0,1]\to\mathbb R$ such that $$f(0)=f(1)=1,\qquad|f'(x)|\le2\text{ for all }x\in[0,1]\qquad\text{and}\qquad\left|\int^1_0f(x)dx\right|\le\frac12.$$