This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 185

2016 Switzerland - Final Round, 2

Let $a, b$ and $c$ be the sides of a triangle, that is: $a + b > c$, $b + c > a$ and $c + a > b$. Show that: $$\frac{ab+ 1}{a^2 + ca + 1} +\frac{bc + 1}{b^2 + ab + 1} +\frac{ca + 1}{c^2 + bc + 1} > \frac32$$

2010 Thailand Mathematical Olympiad, 4

For $i = 1, 2$ let $\vartriangle A_iB_iC_i$ be a triangle with side lengths $a_i, b_i, c_i$ and altitude lengths $p_i, q_i, r_i$. Define $a_3 =\sqrt{a_1^2 + a_2^2}, b_3 =\sqrt{b_1^2 + b_2^2}$ , and $c_3 =\sqrt{c_1^2 + c_2^2}$. Prove that $a_3, b_3, c_3$ are side lengths of a triangle, and if $p_3, q_3, r_3$ are the lengths of altitudes of this triangle, then $p_3^2 \ge p_1^2 +p_2^2$, $q_3^2 \ge q_1^2 +q_2^2$ , and $r_3^2 \ge r_1^2 +r_2^2$

2010 Junior Balkan Team Selection Tests - Moldova, 6

In a right triangle with the length legs $b$ and $c$, and the length hypotenuse $a$, the ratio between the length of the hypotenuse and the length of the diameter of the inscribed circle does not exceed $1 + \sqrt2$. Determine the numerical value of the expression of $E =\frac{a}{b + c}+\frac{b}{c + a}+\frac{c}{a + b}$.

1978 Bulgaria National Olympiad, Problem 6

The base of the pyramid with vertex $S$ is a pentagon $ABCDE$ for which $BC>DE$ and $AB>CD$. If $AS$ is the longest edge of the pyramid prove that $BS>CS$. [i]Jordan Tabov[/i]

1981 Swedish Mathematical Competition, 5

$ABC$ is a triangle. $X$, $Y$, $Z$ lie on $BC$, $CA$, $AB$ respectively. Show that area $XYZ$ cannot be smaller than each of area $AYZ$, area $BZX$, area $CXY$.

1998 Yugoslav Team Selection Test, Problem 2

In a convex quadrilateral $ABCD$, the diagonal $AC$ intersects the diagonal $BD$ at its midpoint $S$. The radii of incircles of triangles $ABS,BCS,CDS,DAS$ are $r_1,r_2,r_3,r_4$, respectively. Prove that $$|r_1-r_2+r_3-r_4|\le\frac18|AB-BC+CD-DA|.$$

1990 Bulgaria National Olympiad, Problem 6

The base $ABC$ of a tetrahedron $MABC$ is an equilateral triangle, and the lateral edges $MA,MB,MC$ are sides of a triangle of the area $S$. If $R$ is the circumradius and $V$ the volume of the tetrahedron, prove that $RS\ge2V$. When does equality hold?

1952 Kurschak Competition, 1

A circle $C$ touches three pairwise disjoint circles whose centers are collinear and none of which contains any of the others. Show that its radius must be larger than the radius of the middle of the three circles.

2022 Durer Math Competition Finals, 9

Every side of a right triangle is an integer when measured in cm, and the difference between the hypotenuse and one of the legs is $75$ cm. What is the smallest possible value of its perimeter?

1962 Kurschak Competition, 3

$P$ is any point of the tetrahedron $ABCD$ except $D$. Show that at least one of the three distances $DA$, $DB$, $DC$ exceeds at least one of the distances $PA$, $PB$ and $PC$.

Durer Math Competition CD Finals - geometry, 2008.C2

Given a triangle with sides $a, b, c$ and medians $s_a, s_b, s_c$ respectively. Prove the following inequality: $$a + b + c> s_a + s_b + s_c> \frac34 (a + b + c) $$

1984 Poland - Second Round, 5

Calculate the lower bound of the areas of convex hexagons whose vertices all have integer coordinates.

2005 Chile National Olympiad, 1

In the center of the square of side $1$ shown in the figure is an ant. At one point the ant starts walking until it touches the left side $(a)$, then continues walking until it reaches the bottom side $(b)$, and finally returns to the starting point. Show that, regardless of the path followed by the ant, the distance it travels is greater than the square root of $2$. [asy] unitsize(2 cm); draw((0,0)--(1,0)--(1,1)--(0,1)--cycle); label("$a$", (0,0.5), W); label("$b$", (0.5,0), S); dot((0.5,0.5)); [/asy]

2010 Estonia Team Selection Test, 3

Let the angles of a triangle be $\alpha, \beta$, and $\gamma$, the perimeter $2p$ and the radius of the circumcircle $R$. Prove the inequality $\cot^2 \alpha + \cot^2 \beta + \cot^2 \gamma \ge 3 \left(\frac{9R^2}{p^2}-1\right)$. When is the equality achieved?

1958 Polish MO Finals, 6

Prove that of all the quadrilaterals circuscribed around a given circle, the square has the smallest perimeter.

1990 Romania Team Selection Test, 5

Let $O$ be the circumcenter of an acute triangle $ABC$ and $R$ be its circumcenter. Consider the disks having $OA,OB,OC$ as diameters, and let $\Delta$ be the set of points in the plane belonging to at least two of the disks. Prove that the area of $\Delta$ is greater than $R^2/8$.

Indonesia Regional MO OSP SMA - geometry, 2012.4

Given an acute triangle $ABC$. Point $H$ denotes the foot of the altitude drawn from $A$. Prove that $$AB + AC \ge BC cos \angle BAC + 2AH sin \angle BAC$$

2015 Regional Olympiad of Mexico Center Zone, 6

We have $3$ circles such that any $2$ of them are externally tangent. Let $a$ be length of the outer tangent common to a pair of them. The lengths $b$ and $c$ are defined similarly. If $T$ is the sum of the areas of such circles, show that $\pi (a + b + c)^2 \le 12T $. Note: In In the case of externally tangent circles, the common external tangent is the segment tangent to them that touches them at different points.

1985 Poland - Second Round, 1

Inside the triangle $ABC$, the point $P$ is chosen. Let $ a, b, c $ be the lengths of the sides $ BC $, $ CA $, $ AB $, respectively, and $ x, y, z $ the distances of the point $ P $ from the vertices $ B, C, A $. Prove that if $$ x^2 + xy + y^2 = a^2 $$ $$y^2 + yz + z^2 = b^2 $$ $$z^2 + zx + x^2 = c^2$$ this $$ a^2 + ab + b^2 > c^2.$$

2020 Jozsef Wildt International Math Competition, W48

Let $ABC$ be a triangle such that $$S^2=2R^2+8Rr+3r^2$$ Then prove that $\frac Rr=2$ or $\frac Rr\ge\sqrt2+1$. [i]Proposed by Marian Cucoanoeş and Marius Drăgan[/i]

1961 Polish MO Finals, 4

Prove that if every side of a triangle is less than $ 1 $, then its area is less than $ \frac{\sqrt{3}}{4} $.

1971 Bulgaria National Olympiad, Problem 6

In a triangular pyramid $SABC$ one of the plane angles with vertex $S$ is a right angle and the orthogonal projection of $S$ on the base plane $ABC$ coincides with the orthocenter of the triangle $ABC$. Let $SA=m$, $SB=n$, $SC=p$, $r$ is the inradius of $ABC$. $H$ is the height of the pyramid and $r_1,r_2,r_3$ are radii of the incircles of the intersections of the pyramid with the plane passing through $SA,SB,SC$ and the height of the pyramid. Prove that (a) $m^2+n^2+p^2\ge18r^2$; (b) $\frac{r_1}H,\frac{r_2}H,\frac{r_3}H$ are in the range $(0.4,0.5)$.

1978 Kurschak Competition, 3

A triangle has inradius $r$ and circumradius $R$. Its longest altitude has length $H$. Show that if the triangle does not have an obtuse angle, then $H \ge r+R$. When does equality hold?

1928 Eotvos Mathematical Competition, 3

Let $\ell$ be a given line, $A$ and $B$ given points of the plane. Choose a point $P$ on $\ell $ so that the longer of the segments $AP$, $BP$ is as short as possible. (If $AP = BP,$ either segment may be taken as the longer one.)

1965 Kurschak Competition, 3

A pyramid has square base and equal sides. It is cut into two parts by a plane parallel to the base. The lower part (which has square top and square base) is such that the circumcircle of the base is smaller than the circumcircles of the lateral faces. Show that the shortest path on the surface joining the two endpoints of a spatial diagonal lies entirely on the lateral faces. [img]https://cdn.artofproblemsolving.com/attachments/c/8/170bec826d5e40308cfd7360725d2aba250bf6.png[/img]