This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 649

2018 Ukraine Team Selection Test, 5

Find the smallest positive number $\lambda$ such that for an arbitrary $12$ points on the plane $P_1,P_2,...P_{12}$ (points may coincide), with distance between arbitrary two of them does not exceeds $1$, holds the inequality $\sum_{1\le i\le j\le 12} P_iP_j^2 \le \lambda$

2001 239 Open Mathematical Olympiad, 7

The quadrangle $ ABCD $ contains two circles of radii $ R_1 $ and $ R_2 $ tangent externally. The first circle touches the sides of $ DA $,$ AB $ and $ BC $, moreover, the sides of $ AB $ at the point $ E $. The second circle touches sides $ BC $, $ CD $ and $ DA $, and sides $ CD $ at $ F $. Diagonals of the quadrangle intersect at $ O $. Prove that $ OE + OF \leq 2 (R_1 + R_2) $. (F. Bakharev, S. Berlov)

2017 LMT, Max Area

The goal of this problem is to show that the maximum area of a polygon with a fixed number of sides and a fixed perimeter is achieved by a regular polygon. (a) Prove that the polygon with maximum area must be convex. (Hint: If any angle is concave, show that the polygon’s area can be increased.) (b) Prove that if two adjacent sides have different lengths, the area of the polygon can be increased without changing the perimeter. (c) Prove that the polygon with maximum area is equilateral, that is, has all the same side lengths. It is true that when given all four side lengths in order of a quadrilateral, the maximum area is achieved in the unique configuration in which the quadrilateral is cyclic, that is, it can be inscribed in a circle. (d) Prove that in an equilateral polygon, if any two adjacent angles are different then the area of the polygon can be increased without changing the perimeter. (e) Prove that the polygon of maximum area must be equiangular, or have all angles equal. (f ) Prove that the polygon of maximum area is a regular polygon. PS. You had better use hide for answers.

2010 Ukraine Team Selection Test, 11

Let $ABC$ be the triangle in which $AB> AC$. Circle $\omega_a$ touches the segment of the $BC$ at point $D$, the extension of the segment $AB$ towards point $B$ at the point $F$, and the extension of the segment $AC$ towards point $C$ at the point $E$. The ray $AD$ intersects circle $\omega_a$ for second time at point $M$. Denote the circle circumscribed around the triangle $CDM$ by $\omega$. Circle $\omega$ intersects the segment $DF$ at N. Prove that $FN > ND$.

1992 IMO Longlists, 59

Let a regular $7$-gon $A_0A_1A_2A_3A_4A_5A_6$ be inscribed in a circle. Prove that for any two points $P, Q$ on the arc $A_0A_6$ the following equality holds: \[\sum_{i=0}^6 (-1)^{i} PA_i = \sum_{i=0}^6 (-1)^{i} QA_i .\]

2003 IMAR Test, 2

Prove that in a triangle the following inequality holds: $$s\sqrt3 \ge \ell_a + \ell_b + \ell_c$$ where $\ell_a$ is the length of the angle bisector from angle $A$, and $s$ is the semiperimeter of the triangle

1966 IMO Shortlist, 5

Prove the inequality \[\tan \frac{\pi \sin x}{4\sin \alpha} + \tan \frac{\pi \cos x}{4\cos \alpha} >1\] for any $x, \alpha$ with $0 \leq x \leq \frac{\pi }{2}$ and $\frac{\pi}{6} < \alpha < \frac{\pi}{3}.$

Indonesia Regional MO OSP SMA - geometry, 2009.3

Given triangle $ABC$ and point $D$ on the $AC$ side. Let $r_1, r_2$ and $r$ denote the radii of the incircle of the triangles $ABD, BCD$, and $ABC$, respectively. Prove that $r_1 + r_2> r$.

2017 Caucasus Mathematical Olympiad, 7

$8$ ants are placed on the edges of the unit cube. Prove that there exists a pair of ants at a distance not exceeding $1$.

1999 Brazil Team Selection Test, Problem 2

In a triangle $ABC$, the bisector of the angle at $A$ of a triangle $ABC$ intersects the segment $BC$ and the circumcircle of $ABC$ at points $A_1$ and $A_2$, respectively. Points $B_1,B_2,C_1,C_2$ are analogously defined. Prove that $$\frac{A_1A_2}{BA_2+CA_2}+\frac{B_1B_2}{CB_2+AB_2}+\frac{C_1C_2}{AC_2+BC_2}\ge\frac34.$$

2023 Iranian Geometry Olympiad, 4

Let $ABCD$ be a convex quadrilateral. Let $E$ be the intersection of its diagonals. Suppose that $CD = BC = BE$. Prove that $AD + DC\ge AB$. [i]Proposed by Dominik Burek - Poland[/i]

1999 Brazil Team Selection Test, Problem 2

In a triangle $ABC$, the bisector of the angle at $A$ of a triangle $ABC$ intersects the segment $BC$ and the circumcircle of $ABC$ at points $A_1$ and $A_2$, respectively. Points $B_1,B_2,C_1,C_2$ are analogously defined. Prove that $$\frac{A_1A_2}{BA_2+CA_2}+\frac{B_1B_2}{CB_2+AB_2}+\frac{C_1C_2}{AC_2+BC_2}\ge\frac34.$$

1998 Belarus Team Selection Test, 1

The lengths of the sides of a convex hexagon $ ABCDEF$ satisfy $ AB \equal{} BC$, $ CD \equal{} DE$, $ EF \equal{} FA$. Prove that: \[ \frac {BC}{BE} \plus{} \frac {DE}{DA} \plus{} \frac {FA}{FC} \geq \frac {3}{2}. \]

2021 Saudi Arabia Training Tests, 4

Let $ABC$ be a triangle with incircle $(I)$, tangent to $BC$, $CA$, $AB$ at $D, E, F$ respectively. On the line $DF$, take points $M, P$ such that $CM \parallel AB$, $AP \parallel BC$. On the line $DE$, take points $N$, $Q$ such that $BN \parallel AC$, $AQ \parallel BC$. Denote $X$ as intersection of $PE$, $QF$ and $K$ as the midpoint of $BC$. Prove that if $AX = IK$ then $\angle BAC \le 60^o$.

1967 IMO Longlists, 22

Let $k_1$ and $k_2$ be two circles with centers $O_1$ and $O_2$ and equal radius $r$ such that $O_1O_2 = r$. Let $A$ and $B$ be two points lying on the circle $k_1$ and being symmetric to each other with respect to the line $O_1O_2$. Let $P$ be an arbitrary point on $k_2$. Prove that \[PA^2 + PB^2 \geq 2r^2.\]

2003 BAMO, 5

Let $ABCD$ be a square, and let $E$ be an internal point on side $AD$. Let $F$ be the foot of the perpendicular from $B$ to $CE$. Suppose $G$ is a point such that $BG = FG$, and the line through $G$ parallel to $BC$ passes through the midpoint of $EF$. Prove that $AC < 2 \cdot FG$.

2018 Hanoi Open Mathematics Competitions, 9

There are three polygons and the area of each one is $3$. They are drawn inside a square of area $6$. Find the greatest value of $m$ such that among those three polygons, we can always find two polygons so that the area of their overlap is not less than $m$.

1987 IMO Longlists, 18

Let $ABCDEFGH$ be a parallelepiped with $AE \parallel BF \parallel CG \parallel DH$. Prove the inequality \[AF + AH + AC \leq AB + AD + AE + AG.\] In what cases does equality hold? [i]Proposed by France.[/i]

1989 IMO Longlists, 66

Let $ n$ and $ k$ be positive integers and let $ S$ be a set of $ n$ points in the plane such that [b]i.)[/b] no three points of $ S$ are collinear, and [b]ii.)[/b] for every point $ P$ of $ S$ there are at least $ k$ points of $ S$ equidistant from $ P.$ Prove that: \[ k < \frac {1}{2} \plus{} \sqrt {2 \cdot n} \]

2014 ISI Entrance Examination, 2

Let us consider a triangle $\Delta{PQR}$ in the co-ordinate plane. Show for every function $f: \mathbb{R}^2\to \mathbb{R}\;,f(X)=ax+by+c$ where $X\equiv (x,y) \text{ and } a,b,c\in\mathbb{R}$ and every point $A$ on $\Delta PQR$ or inside the triangle we have the inequality: \begin{align*} & f(A)\le \text{max}\{f(P),f(Q),f(R)\} \end{align*}

2024 Regional Olympiad of Mexico West, 6

We say that a triangle of sides $a,b,c$ is [i] virtual[/i] if such measures satisfy $$\begin{cases} a^{2024}+b^{2024}> c^{2024},\\ b^{2024}+c^{2024}> a^{2024},\\ c^{2024}+a^{2024}> b^{2024} \end{cases}$$ Find the number of ordered triples $(a,b,c)$ such that $a,b,c$ are integers between $1$ and $2024$ (inclusive) and $a,b,c$ are the sides of a [i]virtual [/i] triangle.

2015 Thailand Mathematical Olympiad, 7

Let $A, B, C$ be centers of three circles that are mutually tangent externally, let $r_A, r_B, r_C$ be the radii of the circles, respectively. Let $r$ be the radius of the incircle of $\vartriangle ABC$. Prove that $$r^2 \le \frac19 (r_A^2 + r_B^2+r_C^2)$$ and identify, with justification, one case where the equality is attained.

2017 Czech And Slovak Olympiad III A, 2

Find all pairs of real numbers $k, l$ such that inequality $ka^2 + lb^2> c^2$ applies to the lengths of sides $a, b, c$ of any triangle.

2022 Sharygin Geometry Olympiad, 6

The incircle and the excircle of triangle $ABC$ touch the side $AC$ at points $P$ and $Q$ respectively. The lines $BP$ and $BQ$ meet the circumcircle of triangle $ABC$ for the second time at points $P'$ and $Q'$ respectively. Prove that $$PP' > QQ'$$

2012 IFYM, Sozopol, 7

The quadrilateral $ABCD$ is such that $AB=AD=1$ and $\angle A=90^\circ$. If $CB=c$, $CA=b$, and $CD=a$, then prove that $(2-a^2-c^2 )^2+(2b^2-a^2-c^2 )^2=4a^2 c^2$ and $(a-c)^2\leq 2b^2\leq (a+c)^2$.