This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 649

1997 Brazil Team Selection Test, Problem 5

Let $ABC$ be an acute-angled triangle with incenter $I$. Consider the point $A_1$ on $AI$ different from $A$, such that the midpoint of $AA_1$ lies on the circumscribed circle of $ABC$. Points $B_1$ and $C_1$ are defined similarly. (a) Prove that $S_{A_1B_1C_1}=(4R+r)p$, where $p$ is the semi-perimeter, $R$ is the circumradius and $r$ is the inradius of $ABC$. (b) Prove that $S_{A_1B_1C_1}\ge9S_{ABC}$.

VMEO II 2005, 4

a) Let $ABC$ be a triangle and a point $I$ lies inside the triangle. Assume $\angle IBA > \angle ICA$ and $\angle IBC >\angle ICB$. Prove that, if extensions of $BI$, $CI$ intersect $AC$, $AB$ at $B'$, $C'$ respectively, then $BB' < CC'$. b) Let $ABC$ be a triangle with $AB < AC$ and angle bisector $AD$. Prove that for every point $I, J$ on the segment $[AD]$ and $I \ne J$, we always have $\angle JBI > \angle JCI$. c) Let $ABC$ be a triangle with $AB < AC$ and angle bisector $AD$. Choose $M, N$ on segments $CD$ and $BD$, respectively, such that $AD$ is the bisector of angle $\angle MAN$. On the segment $[AD]$ take an arbitrary point $I$ (other than $D$). The lines $BI$, $CI$ intersect $AM$, $AN$ at $B', C'$. Prove that $BB' < CC'$.

2011 Sharygin Geometry Olympiad, 17

a) Does there exist a triangle in which the shortest median is longer that the longest bisectrix? b) Does there exist a triangle in which the shortest bisectrix is longer that the longest altitude?

Ukrainian TYM Qualifying - geometry, I.10

Given a circle of radius $R$. Find the ratio of the largest area of ​​the circumscribed quadrilateral to the smallest area of ​​the inscribed one.

2006 All-Russian Olympiad Regional Round, 9.6

In an acute triangle $ABC$, the angle bisector$AD$ and altitude $BE$ are drawn. Prove that angle $CED$ is greater than $45^o$.

2017-IMOC, G2

Given two acute triangles $\vartriangle ABC, \vartriangle DEF$. If $AB \ge DE, BC \ge EF$ and $CA \ge FD$, show that the area of $\vartriangle ABC$ is not less than the area of $\vartriangle DEF$

2006 All-Russian Olympiad Regional Round, 10.1

Natural numbers from $1$ to $200$ were divided into $50$ sets. Prove that one of them contains three numbers that are the lengths of the sides some triangle.

1998 Taiwan National Olympiad, 4

Let $I$ be the incenter of triangle $ABC$. Lines $AI$, $BI$, $CI$ meet the sides of $\triangle ABC$ at $D$, $E$, $F$ respectively. Let $X$, $Y$, $Z$ be arbitrary points on segments $EF$, $FD$, $DE$, respectively. Prove that $d(X, AB) + d(Y, BC) + d(Z, CA) \leq XY + YZ + ZX$, where $d(X, \ell)$ denotes the distance from a point $X$ to a line $\ell$.

1988 Czech And Slovak Olympiad IIIA, 6

Inside the triangle $A_1A_2A_3$ with sides $a_1$, $a_2$, $a_3$, three points are given, which we label $P_1$, $P_2$, $P_3$ so that the product of their distances from the corresponding sides $a_1$, $a_2$, $a_3$ is as large as possible. Prove that the triangles $P_1A_2A_3$, $A_1P_2A_3$, $A_1A_2P_3$ cover the triangle. [hide=original wording]V trojúhelníku A1A2A3 se stranami a1, a2, a3 jsou dány tři body, které označíme Pi, P2, P3 tak, aby součin jejich vzdáleností od odpovídajících stran a1, a2, a3 byl co největší. Dokažte, že trojúhelníky P1A2A3, A1P2A3, A1A2P3 pokrývají trojúhelník.[/quote]

1982 Austrian-Polish Competition, 8

Let $P$ be a point inside a regular tetrahedron ABCD with edge length $1$. Show that $$d(P,AB)+d(P,AC)+d(P,AD)+d(P,BC)+d(P,BD)+d(P,CD) \ge \frac{3}{2} \sqrt2$$ , with equality only when $P$ is the centroid of $ABCD$. Here $d(P,XY)$ denotes the distance from point $P$ to line $XY$.

1969 All Soviet Union Mathematical Olympiad, 127

Let $h_k$ be an apothem of the regular $k$-gon inscribed into a circle with radius $R$. Prove that $$(n + 1)h_{n+1} - nh_n > R$$

1973 All Soviet Union Mathematical Olympiad, 185

Given a triangle with $a,b,c$ sides and with the area $1$ ($a \ge b \ge c$). Prove that $b^2 \ge 2$.

Kyiv City MO 1984-93 - geometry, 1987.7.1

The circle inscribed in the triangle $ABC$ touches the side BC at point $K$. Prove that the segment $AK$ is longer than the diameter of the circle.

1988 ITAMO, 6

The edge lengths of the base of a tetrahedron are $a,b,c$, and the lateral edge lengths are $x,y,z$. If $d$ is the distance from the top vertex to the centroid of the base, prove that $x+y+z \le a+b+c+3d$.

1969 Dutch Mathematical Olympiad, 4

An angle $< 45^o$ is given in the plane of the drawing. Furthermore, the projection $P_1$ of a point $P$ lying above the plane of the drawing and the distance from $P$ to $P_1$ are given. $P_1$ lies within the given angle. On the legs of the given angle, construct points $A$ and $B$, respectively, such that the triangle $PAB$ has a minimal perimeter.

2000 Romania National Olympiad, 3

Let $ABC$ be an acute-angled triangle and variable $D \in [BC]$ . Let's denote by $E, F$ the feet of the perpendiculars from $D$ to $AB$, $AC$ respectively . a) Show that $$\frac{4S^2}{b^2+c^2}\le DE^2 + DF^2\le max \{h_B^2 + h_C^2 \}.$$ b) Proved that, if $D_0 \in [BC]$ is the point where the minimum of the sum $DE^2 + DF^2$ is achieved, then $D_0$ is the leg of the symmetrical median of $A$ facing the bisector of angle $A$. c) Specify the position, of $D \in [BC]$ for which the maximum of the sum $DE^2 + DF^2$ is achieved. (The area of the triangle $ABC$ was denoted by $S$ and $h_b, h_c$ are the lengths of the altitudes from $B$ and $C$ respectively)

2014 Belarusian National Olympiad, 3

The angles at the vertices $A$ and $C$ in the convex quadrilateral $ABCD$ are not acute. Points $K, L, M$ and $N$ are marked on the sides $AB, BC, CD$ and $DA$ respectively. Prove that the perimeter of $KLMN$ is not less than the double length of the diagonal $AC$.

1963 Dutch Mathematical Olympiad, 2

The straight lines $k$ and $\ell$ intersect at right angles. A line intersects $k$ in $A$ and $\ell$ in $B$. Consider all straight line segments $PQ$ ($P$ on $k$ and $Q$ on $\ell$), which makes an angle of $45^o$ with $AB$. (a) Determine the locus of the midpoints of the line segments $PQ$, (b) If the perpendicular bisector of such a line segment $PQ$ intersects the line $k$ at $K$ and the line $\ell$ at $L$, then prove that $KL \ge PQ$. [hide=original wording of second sentence]De loodrechte snijlijn van k en l snijdt k in A en t in B[/hide]

VI Soros Olympiad 1999 - 2000 (Russia), 11.3

A convex quadrilateral $ABCD$ has an inscribed circle touching its sides $AB$, $BC$, $CD$, $DA$ at the points $M$,$N$,$P$,$K$, respectively. Let $O$ be the center of the inscribed circle, the area of the quadrilateral $MNPK$ is equal to $8$. Prove the inequality $$2S \le OA \cdot OC+ OB \cdot OD.$$

Kyiv City MO 1984-93 - geometry, 1990.11.1

Prove that the sum of the distances from any point in space from the vertices of a cube with edge $a$ is not less than $4\sqrt3 a$.

2021 Tuymaada Olympiad, 8

An acute triangle $ABC$ is given, $AC \not= BC$. The altitudes drawn from $A$ and $B$ meet at $H$ and intersect the external bisector of the angle $C$ at $Y$ and $X$ respectively. The external bisector of the angle $AHB$ meets the segments $AX$ and $BY$ at $P$ and $Q$ respectively. If $PX = QY$, prove that $AP + BQ \ge 2CH$.

2012 Belarus Team Selection Test, 1

Determine the greatest possible value of the constant $c$ that satisfies the following condition: for any convex heptagon the sum of the lengthes of all it’s diagonals is greater than $cP$, where $P$ is the perimeter of the heptagon. (I. Zhuk)

OMMC POTM, 2023 12

All four angles of quadrilateral are greater than $60^o$. Prove that we can choose three sides to make a triangle.

1981 Romania Team Selection Tests, 5.

Let $ABC$ be an equilateral triangle, $M$ be a point inside it, and $A',B',C'$ be the intersections of $AM,\; BM,\; CM$ with the sides of $ABC$. If $A'',\; B'',\; C''$ are the midpoints of $BC$, $CA$, $AB$, show that there is a triangle with sides $A'A''$, $B'B''$ and $C'C''$. [i]Laurențiu Panaitopol[/i]