Found problems: 1581
1996 AIME Problems, 14
In triangle $ ABC$ the medians $ \overline{AD}$ and $ \overline{CE}$ have lengths 18 and 27, respectively, and $ AB \equal{} 24$. Extend $ \overline{CE}$ to intersect the circumcircle of $ ABC$ at $ F$. The area of triangle $ AFB$ is $ m\sqrt {n}$, where $ m$ and $ n$ are positive integers and $ n$ is not divisible by the square of any prime. Find $ m \plus{} n$.
1951 Miklós Schweitzer, 15
Let the line
$ z\equal{}x, \, y\equal{}0$
rotate at a constant speed about the $ z$-axis; let at the same time the point of intersection of this line with the $ z$-axis be displaced along the $ z$-axis at constant speed.
(a) Determine that surface of rotation upon which the resulting helical surface can be developed (i.e. isometrically mapped).
(b) Find those lines of the surface of rotation into which the axis and the generators of the helical surface will be mapped by this development.
1989 IMO Longlists, 8
Let $ Ax,By$ be two perpendicular semi-straight lines, being not complanar, (non-coplanar rays) such that $ AB$ is the their common perpendicular, and let $ M$ and $ N$ be the two variable points on $ Ax$ and $ Bx,$ respectively, such that $ AM \plus{} BN \equal{} MN.$
[b](a)[/b] Prove that there exist infinitely many lines being co-planar with each of the straight lines $ MN.$
[b](b)[/b] Prove that there exist infinitely many rotations around a fixed axis $ \delta$ mapping the line $ Ax$ onto a line coplanar with each of the lines $ MN.$
2002 Balkan MO, 3
Two circles with different radii intersect in two points $A$ and $B$. Let the common tangents of the two circles be $MN$ and $ST$ such that $M,S$ lie on the first circle, and $N,T$ on the second. Prove that the orthocenters of the triangles $AMN$, $AST$, $BMN$ and $BST$ are the four vertices of a rectangle.
2005 Georgia Team Selection Test, 2
In triangle $ ABC$ we have $ \angle{ACB} \equal{} 2\angle{ABC}$ and there exists the point $ D$ inside the triangle such that $ AD \equal{} AC$ and $ DB \equal{} DC$. Prove that $ \angle{BAC} \equal{} 3\angle{BAD}$.
2011 APMO, 2
Five points $A_1,A_2,A_3,A_4,A_5$ lie on a plane in such a way that no three among them lie on a same straight line. Determine the maximum possible value that the minimum value for the angles $\angle A_iA_jA_k$ can take where $i, j, k$ are distinct integers between $1$ and $5$.
1988 Federal Competition For Advanced Students, P2, 5
The bisectors of angles $ B$ and $ C$ of triangle $ ABC$ intersect the opposite sides in points $ B'$ and $ C'$ respectively. Show that the line $ B'C'$ intersects the incircle of the triangle.
2014 Indonesia MO Shortlist, G1
The inscribed circle of the $ABC$ triangle has center $I$ and touches to $BC$ at $X$. Suppose the $AI$ and $BC$ lines intersect at $L$, and $D$ is the reflection of $L$ wrt $X$. Points $E$ and $F$ respectively are the result of a reflection of $D$ wrt to lines $CI$ and $BI$ respectively. Show that quadrilateral $BCEF$ is cyclic .
2006 China Team Selection Test, 3
$d$ and $n$ are positive integers such that $d \mid n$. The n-number sets $(x_1, x_2, \cdots x_n)$ satisfy the following condition:
(1) $0 \leq x_1 \leq x_2 \leq \cdots \leq x_n \leq n$
(2) $d \mid (x_1+x_2+ \cdots x_n)$
Prove that in all the n-number sets that meet the conditions, there are exactly half satisfy $x_n=n$.
2011 AIME Problems, 4
In triangle $ABC$, $AB=125,AC=117$, and $BC=120$. The angle bisector of angle $A$ intersects $\overline{BC}$ at point $L$, and the angle bisector of angle $B$ intersects $\overline{AC}$ at point $K$. Let $M$ and $N$ be the feet of the perpendiculars from $C$ to $\overline{BK}$ and $\overline{AL}$, respectively. Find $MN$.
2006 China Team Selection Test, 1
Let $K$ and $M$ be points on the side $AB$ of a triangle $\triangle{ABC}$, and let $L$ and $N$ be points on the side $AC$. The point $K$ is between $M$ and $B$, and the point $L$ is between $N$ and $C$. If $\frac{BK}{KM}=\frac{CL}{LN}$, then prove that the orthocentres of the triangles $\triangle{ABC}$, $\triangle{AKL}$ and $\triangle{AMN}$ lie on one line.
2013 USA TSTST, 4
Circle $\omega$, centered at $X$, is internally tangent to circle $\Omega$, centered at $Y$, at $T$. Let $P$ and $S$ be variable points on $\Omega$ and $\omega$, respectively, such that line $PS$ is tangent to $\omega$ (at $S$). Determine the locus of $O$ -- the circumcenter of triangle $PST$.
2012 ELMO Shortlist, 9
For a set $A$ of integers, define $f(A)=\{x^2+xy+y^2: x,y\in A\}$. Is there a constant $c$ such that for all positive integers $n$, there exists a set $A$ of size $n$ such that $|f(A)|\le cn$?
[i]David Yang.[/i]
2008 Sharygin Geometry Olympiad, 5
(Kiev olympiad, 8--9) Reconstruct the square $ ABCD$, given its vertex $ A$ and distances of vertices $ B$ and $ D$ from a fixed point $ O$ in the plane.
2006 Iran MO (3rd Round), 1
Prove that in triangle $ABC$, radical center of its excircles lies on line $GI$, which $G$ is Centroid of triangle $ABC$, and $I$ is the incenter.
2007 China Western Mathematical Olympiad, 4
A circular disk is partitioned into $ 2n$ equal sectors by $ n$ straight lines through its center. Then, these $ 2n$ sectors are colored in such a way that exactly $ n$ of the sectors are colored in blue, and the other $ n$ sectors are colored in red. We number the red sectors with numbers from $ 1$ to $ n$ in counter-clockwise direction (starting at some of these red sectors), and then we number the blue sectors with numbers from $ 1$ to $ n$ in clockwise direction (starting at some of these blue sectors).
Prove that one can find a half-disk which contains sectors numbered with all the numbers from $ 1$ to $ n$ (in some order). (In other words, prove that one can find $ n$ consecutive sectors which are numbered by all numbers $ 1$, $ 2$, ..., $ n$ in some order.)
[hide="Problem 8 from CWMO 2007"]$ n$ white and $ n$ black balls are placed at random on the circumference of a circle.Starting from a certain white ball,number all white balls in a clockwise direction by $ 1,2,\dots,n$. Likewise number all black balls by $ 1,2,\dots,n$ in anti-clockwise direction starting from a certain black ball.Prove that there exists a chain of $ n$ balls whose collection of numbering forms the set $ \{1,2,3\dots,n\}$.[/hide]
2017 Sharygin Geometry Olympiad, 3
Let $AD, BE$ and $CF$ be the medians of triangle $ABC$. The points $X$ and $Y$ are the reflections of $F$ about $AD$ and $BE$, respectively. Prove that the circumcircles of triangles $BEX$ and $ADY$ are concentric.
2004 Bulgaria Team Selection Test, 2
Let $H$ be the orthocenter of $\triangle ABC$. The points $A_{1} \not= A$, $B_{1} \not= B$ and $C_{1} \not= C$ lie, respectively, on the circumcircles of $\triangle BCH$, $\triangle CAH$ and $\triangle ABH$ and satisfy $A_{1}H=B_{1}H=C_{1}H$. Denote by $H_{1}$, $H_{2}$ and $H_{3}$ the orthocenters of $\triangle A_{1}BC$, $\triangle B_{1}CA$ and $\triangle C_{1}AB$, respectively. Prove that $\triangle A_{1}B_{1}C_{1}$ and $\triangle H_{1}H_{2}H_{3}$ have the same orthocenter.
2012 AIME Problems, 15
Triangle $ABC$ is inscribed in circle $\omega$ with $AB = 5$, $BC = 7$, and $AC = 3$. The bisector of angle $A$ meets side $BC$ at $D$ and circle $\omega$ at a second point $E$. Let $\gamma$ be the circle with diameter $DE$. Circles $\omega$ and $\gamma$ meet at $E$ and a second point $F$. Then $AF^2 = \frac mn$, where m and n are relatively prime positive integers. Find $m + n$.
2010 Iran Team Selection Test, 11
Let $O, H$ be circumcenter and orthogonal center of triangle $ABC$. $M,N$ are midpoints of $BH$ and $CH$. $BB'$ is diagonal of circumcircle. If $HONM$ is a cyclic quadrilateral, prove that $B'N=\frac12AC$.
2006 Taiwan National Olympiad, 3
Let the major axis of an ellipse be $AB$, let $O$ be its center, and let $F$ be one of its foci. $P$ is a point on the ellipse, and $CD$ a chord through $O$, such that $CD$ is parallel to the tangent of the ellipse at $P$. $PF$ and $CD$ intersect at $Q$. Compare the lengths of $PQ$ and $OA$.
2020 AIME Problems, 4
Triangles $\triangle ABC$ and $\triangle A'B'C'$ lie in the coordinate plane with vertices $A(0,0)$, $B(0,12)$, $C(16,0)$, $A'(24,18)$, $B'(36,18)$, and $C'(24,2)$. A rotation of $m$ degrees clockwise around the point $(x,y)$, where $0<m<180$, will transform $\triangle ABC$ to $\triangle A'B'C'$. Find $m+x+y$.
1989 Polish MO Finals, 2
$k_1, k_2, k_3$ are three circles. $k_2$ and $k_3$ touch externally at $P$, $k_3$ and $k_1$ touch externally at $Q$, and $k_1$ and $k_2$ touch externally at $R$. The line $PQ$ meets $k_1$ again at $S$, the line $PR$ meets $k_1$ again at $T$. The line $RS$ meets $k_2$ again at $U$, and the line $QT$ meets $k_3$ again at $V$. Show that $P, U, V$ are collinear.
1999 Turkey Team Selection Test, 2
Let $L$ and $N$ be the mid-points of the diagonals $[AC]$ and $[BD]$ of the cyclic quadrilateral $ABCD$, respectively. If $BD$ is the bisector of the angle $ANC$, then prove that $AC$ is the bisector of the angle $BLD$.
2014 Contests, 2
The points $K$ and $L$ on the side $BC$ of a triangle $\triangle{ABC}$ are such that $\widehat{BAK}=\widehat{CAL}=90^\circ$. Prove that the midpoint of the altitude drawn from $A$, the midpoint of $KL$ and the circumcentre of $\triangle{ABC}$ are collinear.
[i](A. Akopyan, S. Boev, P. Kozhevnikov)[/i]