This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1581

2005 Iran Team Selection Test, 2

Assume $ABC$ is an isosceles triangle that $AB=AC$ Suppose $P$ is a point on extension of side $BC$. $X$ and $Y$ are points on $AB$ and $AC$ that: \[PX || AC \ , \ PY ||AB \] Also $T$ is midpoint of arc $BC$. Prove that $PT \perp XY$

2005 CentroAmerican, 3

Let $ABC$ be a triangle. $P$, $Q$ and $R$ are the points of contact of the incircle with sides $AB$, $BC$ and $CA$, respectively. Let $L$, $M$ and $N$ be the feet of the altitudes of the triangle $PQR$ from $R$, $P$ and $Q$, respectively. a) Show that the lines $AN$, $BL$ and $CM$ meet at a point. b) Prove that this points belongs to the line joining the orthocenter and the circumcenter of triangle $PQR$. [i]Aarón Ramírez, El Salvador[/i]

2007 Singapore Team Selection Test, 1

Two circles $ (O_1)$ and $ (O_2)$ touch externally at the point $C$ and internally at the points $A$ and $B$ respectively with another circle $(O)$. Suppose that the common tangent of $ (O_1)$ and $ (O_2)$ at $C$ meets $(O)$ at $P$ such that $PA=PB$. Prove that $PO$ is perpendicular to $AB$.

2010 Princeton University Math Competition, 6

In the following diagram, a semicircle is folded along a chord $AN$ and intersects its diameter $MN$ at $B$. Given that $MB : BN = 2 : 3$ and $MN = 10$. If $AN = x$, find $x^2$. [asy] size(120); defaultpen(linewidth(0.7)+fontsize(10)); pair D2(pair P) { dot(P,linewidth(3)); return P; } real r = sqrt(80)/5; pair M=(-1,0), N=(1,0), A=intersectionpoints(arc((M+N)/2, 1, 0, 180),circle(N,r))[0], C=intersectionpoints(circle(A,1),circle(N,1))[0], B=intersectionpoints(circle(C,1),M--N)[0]; draw(arc((M+N)/2, 1, 0, 180)--cycle); draw(A--N); draw(arc(C,1,180,180+2*aSin(r/2))); label("$A$",D2(A),NW); label("$B$",D2(B),SW); label("$M$",D2(M),S); label("$N$",D2(N),SE); [/asy]

2017 Bulgaria EGMO TST, 2

Let $ABC$ be a triangle with incenter $I$. The line $AI$ intersects $BC$ and the circumcircle of $ABC$ at the points $T$ and $S$, respectively. Let $K$ and $L$ be the incenters of $SBT$ and $SCT$, respectively, $M$ be the midpoint of $BC$ and $P$ be the reflection of $I$ with respect to $KL$. a) Prove that $M$, $T$, $K$ and $L$ are concyclic. b) Determine the measure of $\angle BPC$.

2008 Tuymaada Olympiad, 3

Point $ I_1$ is the reflection of incentre $ I$ of triangle $ ABC$ across the side $ BC$. The circumcircle of $ BCI_1$ intersects the line $ II_1$ again at point $ P$. It is known that $ P$ lies outside the incircle of the triangle $ ABC$. Two tangents drawn from $ P$ to the latter circle touch it at points $ X$ and $ Y$. Prove that the line $ XY$ contains a medial line of the triangle $ ABC$. [i]Author: L. Emelyanov[/i]

2014 Tuymaada Olympiad, 2

The points $K$ and $L$ on the side $BC$ of a triangle $\triangle{ABC}$ are such that $\widehat{BAK}=\widehat{CAL}=90^\circ$. Prove that the midpoint of the altitude drawn from $A$, the midpoint of $KL$ and the circumcentre of $\triangle{ABC}$ are collinear. [i](A. Akopyan, S. Boev, P. Kozhevnikov)[/i]

2003 Belarusian National Olympiad, 3

Two triangles are said to be [i]twins [/i] if one of them is an image of the other one under a parallel projection. Prove that two triangles are twins if and only if either at least a side of one of them equals a side of another or both the triangles have equal segments that connect the corresponding vertices with some points on the opposite sides which divide these sides in the same ratio. (E. Barabanov)

2010 Tournament Of Towns, 7

Several fleas sit on the squares of a $10\times 10$ chessboard (at most one fea per square). Every minute, all fleas simultaneously jump to adjacent squares. Each fea begins jumping in one of four directions (up, down, left, right), and keeps jumping in this direction while it is possible; otherwise, it reverses direction on the opposite. It happened that during one hour, no two fleas ever occupied the same square. Find the maximal possible number of fleas on the board.

2007 AMC 12/AHSME, 11

A finite sequence of three-digit integers has the property that the tens and units digits of each term are, respectively, the hundreds and tens digits of the next term, and the tens and units digits of the last term are, respectively, the hundreds and tens digits of the first term. For example, such a sequence might begin with the terms $ 247,$ $ 275,$ and $ 756$ and end with the term $ 824.$ Let $ \mathcal{S}$ be the sum of all the terms in the sequence. What is the largest prime factor that always divides $ \mathcal{S}?$ $ \textbf{(A)}\ 3 \qquad \textbf{(B)}\ 7 \qquad \textbf{(C)}\ 13 \qquad \textbf{(D)}\ 37 \qquad \textbf{(E)}\ 43$

2012 Iran Team Selection Test, 1

Consider a regular $2^k$-gon with center $O$ and label its sides clockwise by $l_1,l_2,...,l_{2^k}$. Reflect $O$ with respect to $l_1$, then reflect the resulting point with respect to $l_2$ and do this process until the last side. Prove that the distance between the final point and $O$ is less than the perimeter of the $2^k$-gon. [i]Proposed by Hesam Rajabzade[/i]

2010 Iran MO (3rd Round), 3

in a quadrilateral $ABCD$ digonals are perpendicular to each other. let $S$ be the intersection of digonals. $K$,$L$,$M$ and $N$ are reflections of $S$ to $AB$,$BC$,$CD$ and $DA$. $BN$ cuts the circumcircle of $SKN$ in $E$ and $BM$ cuts the circumcircle of $SLM$ in $F$. prove that $EFLK$ is concyclic.(20 points)

2010 Indonesia TST, 3

Two parallel lines $r,s$ and two points $P \in r$ and $Q \in s$ are given in a plane. Consider all pairs of circles $(C_P, C_Q)$ in that plane such that $C_P$ touches $r$ at $P$ and $C_Q$ touches $s$ at $Q$ and which touch each other externally at some point $T$. Find the locus of $T$.

2013 European Mathematical Cup, 3

We are given a combination lock consisting of $6$ rotating discs. Each disc consists of digits $0, 1, 2,\ldots , 9$ in that order (after digit $9$ comes $0$). Lock is opened by exactly one combination. A move consists of turning one of the discs one digit in any direction and the lock opens instantly if the current combination is correct. Discs are initially put in the position $000000$, and we know that this combination is not correct. [list] a) What is the least number of moves necessary to ensure that we have found the correct combination? b) What is the least number of moves necessary to ensure that we have found the correct combination, if we know that none of the combinations $000000, 111111, 222222, \ldots , 999999$ is correct?[/list] [i]Proposed by Ognjen Stipetić and Grgur Valentić[/i]

2008 Tuymaada Olympiad, 4

Point $ I_1$ is the reflection of incentre $ I$ of triangle $ ABC$ across the side $ BC$. The circumcircle of $ BCI_1$ intersects the line $ II_1$ again at point $ P$. It is known that $ P$ lies outside the incircle of the triangle $ ABC$. Two tangents drawn from $ P$ to the latter circle touch it at points $ X$ and $ Y$. Prove that the line $ XY$ contains a medial line of the triangle $ ABC$. [i]Author: L. Emelyanov[/i]

2008 Turkey Junior National Olympiad, 1

Let $ABC$ be a right triangle with $m(\widehat {C}) = 90^\circ$, and $D$ be its incenter. Let $N$ be the intersection of the line $AD$ and the side $CB$. If $|CA|+|AD|=|CB|$, and $|CN|=2$, then what is $|NB|$?

2004 Turkey Team Selection Test, 2

Let $\triangle ABC$ be an acute triangle, $O$ be its circumcenter, and $D$ be a point different that $A$ and $C$ on the smaller $AC$ arc of its circumcircle. Let $P$ be a point on $[AB]$ satisfying $\widehat{ADP} = \widehat {OBC}$ and $Q$ be a point on $[BC]$ satisfying $\widehat{CDQ}=\widehat {OBA}$. Show that $\widehat {DPQ} = \widehat {DOC}$.

2010 Serbia National Math Olympiad, 1

Let $O$ be the circumcenter of triangle $ABC$. A line through $O$ intersects the sides $CA$ and $CB$ at points $D$ and $E$ respectively, and meets the circumcircle of $ABO$ again at point $P \neq O$ inside the triangle. A point $Q$ on side $AB$ is such that $\frac{AQ}{QB}=\frac{DP}{PE}$. Prove that $\angle APQ = 2\angle CAP$. [i]Proposed by Dusan Djukic[/i]

2014 Harvard-MIT Mathematics Tournament, 10

Let $ABC$ be a triangle with $AB = 13$, $BC = 14$, and $CA = 15$. Let $\Gamma$ be the circumcircle of $ABC$, let $O$ be its circumcenter, and let $M$ be the midpoint of minor arc $BC$. Circle $\omega_1$ is internally tangent to $\Gamma$ at $A$, and circle $\omega_2$, centered at $M$, is externally tangent to $\omega_1$ at a point $T$. Ray $AT$ meets segment $BC$ at point $S$, such that $BS - CS = \dfrac4{15}$. Find the radius of $\omega_2$

Revenge EL(S)MO 2024, 6

Fix a point $A$, a circle $\Omega$ centered at $O$, and reals $r$ and $\theta$. Let $X$ and $Y$ be variable points on $\Omega$ so that $\measuredangle XOY = \theta$. The tangents to $\Omega$ at $X$ and $Y$ meet at $T$, and a dilation at $T$ with scale factor $r$ sends $A$ to $A'$. Let $P$ be the foot from $A'$ to $TX$. $ $ $ $ $ $ $ $ $ $ Suppose that some point $P^*$ is the same for two different $X$. Show that $\measuredangle TXY = \measuredangle AP^\ast O$. (All angles are directed.) Proposed by [i]Karn Chutinan[/i]

2015 Belarus Team Selection Test, 2

In a cyclic quadrilateral $ABCD$, the extensions of sides $AB$ and $CD$ meet at point $P$, and the extensions of sides $AD$ and $BC$ meet at point $Q$. Prove that the distance between the orthocenters of triangles $APD$ and $AQB$ is equal to the distance between the orthocenters of triangles $CQD$ and $BPC$.

2010 Danube Mathematical Olympiad, 2

Given a triangle $ABC$, let $A',B',C'$ be the perpendicular feet dropped from the centroid $G$ of the triangle $ABC$ onto the sides $BC,CA,AB$ respectively. Reflect $A',B',C'$ through $G$ to $A'',B'',C''$ respectively. Prove that the lines $AA'',BB'',CC''$ are concurrent.

2007 Princeton University Math Competition, 2

In how many distinguishable ways can $10$ distinct pool balls be formed into a pyramid ($6$ on the bottom, $3$ in the middle, one on top), assuming that all rotations of the pyramid are indistinguishable?

2013 China Team Selection Test, 1

Let $p$ be a prime number and $a, k$ be positive integers such that $p^a<k<2p^a$. Prove that there exists a positive integer $n$ such that \[n<p^{2a}, C_n^k\equiv n\equiv k\pmod {p^a}.\]

2000 AMC 12/AHSME, 25

Eight congruent equilateral triangles, each of a different color, are used to construct a regular octahedron. How many distinguishable ways are there to construct the octahedron? (Two colored octahedrons are distinguishable if neither can be rotated to look just like the other.) [asy]import three; import math; size(180); defaultpen(linewidth(.8pt)); currentprojection=orthographic(2,0.2,1); triple A=(0,0,1); triple B=(sqrt(2)/2,sqrt(2)/2,0); triple C=(sqrt(2)/2,-sqrt(2)/2,0); triple D=(-sqrt(2)/2,-sqrt(2)/2,0); triple E=(-sqrt(2)/2,sqrt(2)/2,0); triple F=(0,0,-1); draw(A--B--E--cycle); draw(A--C--D--cycle); draw(F--C--B--cycle); draw(F--D--E--cycle,dotted+linewidth(0.7));[/asy]$ \textbf{(A)}\ 210 \qquad \textbf{(B)}\ 560 \qquad \textbf{(C)}\ 840 \qquad \textbf{(D)}\ 1260 \qquad \textbf{(E)}\ 1680$