This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1581

2002 Iran MO (3rd Round), 10

$H,I,O,N$ are orthogonal center, incenter, circumcenter, and Nagelian point of triangle $ABC$. $I_{a},I_{b},I_{c}$ are excenters of $ABC$ corresponding vertices $A,B,C$. $S$ is point that $O$ is midpoint of $HS$. Prove that centroid of triangles $I_{a}I_{b}I_{c}$ and $SIN$ concide.

2022 Sharygin Geometry Olympiad, 18

The products of the opposite sidelengths of a cyclic quadrilateral $ABCD$ are equal. Let $B'$ be the reflection of $B$ about $AC$. Prove that the circle passing through $A,B', D$ touches $AC$

2010 Contests, 2

Given a triangle $ABC$, let $A',B',C'$ be the perpendicular feet dropped from the centroid $G$ of the triangle $ABC$ onto the sides $BC,CA,AB$ respectively. Reflect $A',B',C'$ through $G$ to $A'',B'',C''$ respectively. Prove that the lines $AA'',BB'',CC''$ are concurrent.

2005 Mediterranean Mathematics Olympiad, 4

Let $A$ be the set of all polynomials $f(x)$ of order $3$ with integer coefficients and cubic coefficient $1$, so that for every $f(x)$ there exists a prime number $p$ which does not divide $2004$ and a number $q$ which is coprime to $p$ and $2004$, so that $f(p)=2004$ and $f(q)=0$. Prove that there exists a infinite subset $B\subset A$, so that the function graphs of the members of $B$ are identical except of translations

2009 Iran Team Selection Test, 9

In triangle $ABC$, $D$, $E$ and $F$ are the points of tangency of incircle with the center of $I$ to $BC$, $CA$ and $AB$ respectively. Let $M$ be the foot of the perpendicular from $D$ to $EF$. $P$ is on $DM$ such that $DP = MP$. If $H$ is the orthocenter of $BIC$, prove that $PH$ bisects $ EF$.

2006 Iran MO (3rd Round), 3

For $A\subset\mathbb Z$ and $a,b\in\mathbb Z$. We define $aA+b: =\{ax+b|x\in A\}$. If $a\neq0$ then we calll $aA+b$ and $A$ to similar sets. In this question the Cantor set $C$ is the number of non-negative integers that in their base-3 representation there is no $1$ digit. You see \[C=(3C)\dot\cup(3C+2)\ \ \ \ \ \ (1)\] (i.e. $C$ is partitioned to sets $3C$ and $3C+2$). We give another example $C=(3C)\dot\cup(9C+6)\dot\cup(3C+2)$. A representation of $C$ is a partition of $C$ to some similiar sets. i.e. \[C=\bigcup_{i=1}^{n}C_{i}\ \ \ \ \ \ (2)\] and $C_{i}=a_{i}C+b_{i}$ are similar to $C$. We call a representation of $C$ a primitive representation iff union of some of $C_{i}$ is not a set similar and not equal to $C$. Consider a primitive representation of Cantor set. Prove that a) $a_{i}>1$. b) $a_{i}$ are powers of 3. c) $a_{i}>b_{i}$ d) (1) is the only primitive representation of $C$.

2002 IMC, 1

A standard parabola is the graph of a quadratic polynomial $y = x^2 + ax + b$ with leading co\"efficient 1. Three standard parabolas with vertices $V1, V2, V3$ intersect pairwise at points $A1, A2, A3$. Let $A \mapsto s(A)$ be the reflection of the plane with respect to the $x$-axis. Prove that standard parabolas with vertices $s (A1), s (A2), s (A3)$ intersect pairwise at the points $s (V1), s (V2), s (V3)$.

1999 APMO, 3

Let $\Gamma_1$ and $\Gamma_2$ be two circles intersecting at $P$ and $Q$. The common tangent, closer to $P$, of $\Gamma_1$ and $\Gamma_2$ touches $\Gamma_1$ at $A$ and $\Gamma_2$ at $B$. The tangent of $\Gamma_1$ at $P$ meets $\Gamma_2$ at $C$, which is different from $P$, and the extension of $AP$ meets $BC$ at $R$. Prove that the circumcircle of triangle $PQR$ is tangent to $BP$ and $BR$.

2016 Bangladesh Mathematical Olympiad, 8

Triangle $ABC$ is inscribed in circle $\omega$ with $AB = 5$, $BC = 7$, and $AC = 3$. The bisector of angle $A$ meets side $BC$ at $D$ and circle $\omega$ at a second point $E$. Let $\gamma$ be the circle with diameter $DE$. Circles $\omega$ and $\gamma$ meet at $E$ and a second point $F$. Then $AF^2 = \frac mn$, where m and n are relatively prime positive integers. Find $m + n$.

2013 AMC 10, 20

A unit square is rotated $45^\circ$ about its center. What is the area of the region swept out by the interior of the square? $ \textbf{(A)}\ 1-\frac{\sqrt2}2+\frac\pi4\qquad\textbf{(B)}\ \frac12+\frac\pi4\qquad\textbf{(C)}\ 2-\sqrt2+\frac\pi4\qquad\textbf{(D)}\ \frac{\sqrt2}2+\frac\pi4\qquad\textbf{(E)}\ 1+\frac{\sqrt2}4+\frac\pi8 $

2013 Serbia National Math Olympiad, 3

Let $M$, $N$ and $P$ be midpoints of sides $BC, AC$ and $AB$, respectively, and let $O$ be circumcenter of acute-angled triangle $ABC$. Circumcircles of triangles $BOC$ and $MNP$ intersect at two different points $X$ and $Y$ inside of triangle $ABC$. Prove that \[\angle BAX=\angle CAY.\]

2004 China Team Selection Test, 2

Two equal-radii circles with centres $ O_1$ and $ O_2$ intersect each other at $ P$ and $ Q$, $ O$ is the midpoint of the common chord $ PQ$. Two lines $ AB$ and $ CD$ are drawn through $ P$ ( $ AB$ and $ CD$ are not coincide with $ PQ$ ) such that $ A$ and $ C$ lie on circle $ O_1$ and $ B$ and $ D$ lie on circle $ O_2$. $ M$ and $ N$ are the mipoints of segments $ AD$ and $ BC$ respectively. Knowing that $ O_1$ and $ O_2$ are not in the common part of the two circles, and $ M$, $ N$ are not coincide with $ O$. Prove that $ M$, $ N$, $ O$ are collinear.

2015 Turkey Team Selection Test, 8

Let $ABC$ be a triangle with incenter $I$ and circumcenter $O$ such that $|AC|>|BC|>|AB|$ and the incircle touches the sides $BC, CA, AB$ at $D, E, F$ respectively. Let the reflection of $A$ with respect to $F$ and $E$ be $F_1$ and $E_1$ respectively. The circle tangent to $BC$ at $D$ and passing through $F_1$ intersects $AB$ a second time at $F_2$ and the circle tangent to $BC$ at $D$ and passing through $E_1$ intersects $AC$ a second time at $E_2$. The midpoints of the segments $|OE|$ and $|IF|$ are $P$ and $Q$ respectively. Prove that \[|AB| + |AC| = 2|BC| \iff PQ\perp E_2F_2 \].

2003 Putnam, 5

Let $A$, $B$ and $C$ be equidistant points on the circumference of a circle of unit radius centered at $O$, and let $P$ be any point in the circle's interior. Let $a$, $b$, $c$ be the distances from $P$ to $A$, $B$, $C$ respectively. Show that there is a triangle with side lengths $a$, $b$, $c$, and that the area of this triangle depends only on the distance from $P$ to $O$.

2006 AIME Problems, 8

There is an unlimited supply of congruent equilateral triangles made of colored paper. Each triangle is a solid color with the same color on both sides of the paper. A large equilateral triangle is constructed from four of these paper triangles. Two large triangles are considered distinguishable if it is not possible to place one on the other, using translations, rotations, and/or reflections, so that their corresponding small triangles are of the same color. Given that there are six different colors of triangles from which to choose, how many distinguishable large equilateral triangles may be formed?

2011 ELMO Shortlist, 2

Let $\omega,\omega_1,\omega_2$ be three mutually tangent circles such that $\omega_1,\omega_2$ are externally tangent at $P$, $\omega_1,\omega$ are internally tangent at $A$, and $\omega,\omega_2$ are internally tangent at $B$. Let $O,O_1,O_2$ be the centers of $\omega,\omega_1,\omega_2$, respectively. Given that $X$ is the foot of the perpendicular from $P$ to $AB$, prove that $\angle{O_1XP}=\angle{O_2XP}$. [i]David Yang.[/i]

2016 Polish MO Finals, 6

Let $I$ be an incenter of $\triangle ABC$. Denote $D, \ S \neq A$ intersections of $AI$ with $BC, \ O(ABC)$ respectively. Let $K, \ L$ be incenters of $\triangle DSB, \ \triangle DCS$. Let $P$ be a reflection of $I$ with the respect to $KL$. Prove that $BP \perp CP$.

2012 Sharygin Geometry Olympiad, 8

Let $BM$ be the median of right-angled triangle $ABC (\angle B = 90^{\circ})$. The incircle of triangle $ABM$ touches sides $AB, AM$ in points $A_{1},A_{2}$; points $C_{1}, C_{2}$ are defined similarly. Prove that lines $A_{1}A_{2}$ and $C_{1}C_{2}$ meet on the bisector of angle $ABC$.

2018 Mexico National Olympiad, 6

Let $ABC$ be an acute-angled triangle with circumference $\Omega$. Let the angle bisectors of $\angle B$ and $\angle C$ intersect $\Omega$ again at $M$ and $N$. Let $I$ be the intersection point of these angle bisectors. Let $M'$ and $N'$ be the respective reflections of $M$ and $N$ in $AC$ and $AB$. Prove that the center of the circle passing through $I$, $M'$, $N'$ lies on the altitude of triangle $ABC$ from $A$. [i]Proposed by Victor Domínguez and Ariel García[/i]

2005 China Western Mathematical Olympiad, 5

Circles $C(O_1)$ and $C(O_2)$ intersect at points $A$, $B$. $CD$ passing through point $O_1$ intersects $C(O_1)$ at point $D$ and tangents $C(O_2)$ at point $C$. $AC$ tangents $C(O_1)$ at $A$. Draw $AE \bot CD$, and $AE$ intersects $C(O_1)$ at $E$. Draw $AF \bot DE$, and $AF$ intersects $DE$ at $F$. Prove that $BD$ bisects $AF$.

2014 PUMaC Algebra B, 3

On the number line, consider the point $x$ that corresponds to the value $10$. Consider $24$ distinct integer points $y_1$, $y_2$, $\ldots$, $y_{24}$ on the number line such that for all $k$ such that $1\leq k\leq 12$, we have that $y_{2k-1}$ is the reflection of $y_{2k}$ across $x$. Find the minimum possible value of \[\textstyle\sum_{n=1}^{24}(|y_n-1|+|y_n+1|).\]

2007 Baltic Way, 12

Let $M$ be a point on the arc $AB$ of the circumcircle of the triangle $ABC$ which does not contain $C$. Suppose that the projections of $M$ onto the lines $AB$ and $BC$ lie on the sides themselves, not on their extensions. Denote these projections by $X$ and $Y$, respectively. Let $K$ and $N$ be the midpoints of $AC$ and $XY$, respectively. Prove that $\angle MNK=90^{\circ}$ .

2013 Uzbekistan National Olympiad, 1

Let real numbers $a,b$ such that $a\ge b\ge 0$. Prove that \[ \sqrt{a^2+b^2}+\sqrt[3]{a^3+b^3}+\sqrt[4]{a^4+b^4} \le 3a+b .\]

1993 AMC 12/AHSME, 8

Let $C_1$ and $C_2$ be circles of radius $1$ that are in the same plane and tangent to each other. How many circles of radius $3$ are in this plane and tangent to both $C_1$ and $C_2$? $ \textbf{(A)}\ 2 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\ 5 \qquad\textbf{(D)}\ 6 \qquad\textbf{(E)}\ 8 $

2014 NIMO Problems, 14

Let $ABC$ be a triangle with circumcenter $O$ and let $X$, $Y$, $Z$ be the midpoints of arcs $BAC$, $ABC$, $ACB$ on its circumcircle. Let $G$ and $I$ denote the centroid of $\triangle XYZ$ and the incenter of $\triangle ABC$. Given that $AB = 13$, $BC = 14$, $CA = 15$, and $\frac {GO}{GI} = \frac mn$ for relatively prime positive integers $m$ and $n$, compute $100m+n$. [i]Proposed by Evan Chen[/i]