This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1581

2009 Sharygin Geometry Olympiad, 20

Suppose $ H$ and $ O$ are the orthocenter and the circumcenter of acute triangle $ ABC$; $ AA_1$, $ BB_1$ and $ CC_1$ are the altitudes of the triangle. Point $ C_2$ is the reflection of $ C$ in $ A_1B_1$. Prove that $ H$, $ O$, $ C_1$ and $ C_2$ are concyclic.

1995 Italy TST, 4

In a triangle $ABC$, $P$ and $Q$ are the feet of the altitudes from $B$ and $A$ respectively. Find the locus of the circumcentre of triangle $PQC$, when point $C$ varies (with $A$ and $B$ fixed) in such a way that $\angle ACB$ is equal to $60^{\circ}$.

2007 USA Team Selection Test, 5

Triangle $ ABC$ is inscribed in circle $ \omega$. The tangent lines to $ \omega$ at $ B$ and $ C$ meet at $ T$. Point $ S$ lies on ray $ BC$ such that $ AS \perp AT$. Points $ B_1$ and $ C_1$ lie on ray $ ST$ (with $ C_1$ in between $ B_1$ and $ S$) such that $ B_1T \equal{} BT \equal{} C_1T$. Prove that triangles $ ABC$ and $ AB_1C_1$ are similar to each other.

2018 USA TSTST, 9

Show that there is an absolute constant $c < 1$ with the following property: whenever $\mathcal P$ is a polygon with area $1$ in the plane, one can translate it by a distance of $\frac{1}{100}$ in some direction to obtain a polygon $\mathcal Q$, for which the intersection of the interiors of $\mathcal P$ and $\mathcal Q$ has total area at most $c$. [i]Linus Hamilton[/i]

2016 India Regional Mathematical Olympiad, 5

Let $ABC$ be a right angled triangle with $\angle B=90^{\circ}$. Let $AD$ be the bisector of angle $A$ with $D$ on $BC$ . Let the circumcircle of triangle $ACD$ intersect $AB$ again at $E$; and let the circumcircle of triangle $ABD$ intersect $AC$ again at $F$ . Let $K$ be the reflection of $E$ in the line $BC$ . Prove that $FK = BC$.

2024 AMC 10, 13

Two transformations are said to [i]commute[/i] if applying the first followed by the second gives the same result as applying the second followed by the first. Consider these four transformations of the coordinate plane: - A translation $2$ units to the right - A $90^\circ$- rotation counterclockwise about the origin. - A reflection across the $x$-axis, and - A dilation centered at the origin with scale factor $2$. Of the $6$ pairs of distinct transformations from this list, how many commute? $ \textbf{(A) }1 \qquad \textbf{(B) }2 \qquad \textbf{(C) }3 \qquad \textbf{(D) }4 \qquad \textbf{(E) }5 \qquad $

2014 NIMO Problems, 3

In triangle $ABC$, we have $AB=AC=20$ and $BC=14$. Consider points $M$ on $\overline{AB}$ and $N$ on $\overline{AC}$. If the minimum value of the sum $BN + MN + MC$ is $x$, compute $100x$. [i]Proposed by Lewis Chen[/i]

1993 China National Olympiad, 1

Given an odd $n$, prove that there exist $2n$ integers $a_1,a_2,\cdots ,a_n$; $b_1,b_2,\cdots ,b_n$, such that for any integer $k$ ($0<k<n$), the following $3n$ integers: $a_i+a_{i+1}, a_i+b_i, b_i+b_{i+k}$ ($i=1,2,\cdots ,n; a_{n+1}=a_1, b_{n+j}=b_j, 0<j<n$) are of different remainders on division by $3n$.

2008 AMC 12/AHSME, 23

The solutions of the equation $ z^4 \plus{} 4z^3i \minus{} 6z^2 \minus{} 4zi \minus{} i \equal{} 0$ are the vertices of a convex polygon in the complex plane. What is the area of the polygon? $ \textbf{(A)}\ 2^{5/8} \qquad \textbf{(B)}\ 2^{3/4} \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 2^{5/4} \qquad \textbf{(E)}\ 2^{3/2}$

1997 China Team Selection Test, 1

Given a real number $\lambda > 1$, let $P$ be a point on the arc $BAC$ of the circumcircle of $\bigtriangleup ABC$. Extend $BP$ and $CP$ to $U$ and $V$ respectively such that $BU = \lambda BA$, $CV = \lambda CA$. Then extend $UV$ to $Q$ such that $UQ = \lambda UV$. Find the locus of point $Q$.

2002 Romania National Olympiad, 1

Let $X,Y,Z,T$ be four points in the plane. The segments $[XY]$ and $[ZT]$ are said to be [i]connected[/i], if there is some point $O$ in the plane such that the triangles $OXY$ and $OZT$ are right-angled at $O$ and isosceles. Let $ABCDEF$ be a convex hexagon such that the pairs of segments $[AB],[CE],$ and $[BD],[EF]$ are [i]connected[/i]. Show that the points $A,C,D$ and $F$ are the vertices of a parallelogram and $[BC]$ and $[AE]$ are [i]connected[/i].

2009 Vietnam Team Selection Test, 2

Let a circle $ (O)$ with diameter $ AB$. A point $ M$ move inside $ (O)$. Internal bisector of $ \widehat{AMB}$ cut $ (O)$ at $ N$, external bisector of $ \widehat{AMB}$ cut $ NA,NB$ at $ P,Q$. $ AM,BM$ cut circle with diameter $ NQ,NP$ at $ R,S$. Prove that: median from $ N$ of triangle $ NRS$ pass over a fix point.

2006 South East Mathematical Olympiad, 3

There is a standard deck of $52$ cards without jokers. The deck consists of four suits(diamond, club, heart, spade) which include thirteen cards in each. For each suit, all thirteen cards are ranked from “$2$” to “$A$” (i.e. $2, 3,\ldots , Q, K, A$). A pair of cards is called a “[i]straight flush[/i]” if these two cards belong to the same suit and their ranks are adjacent. Additionally, "$A$" and "$2$" are considered to be adjacent (i.e. "A" is also considered as "$1$"). For example, spade $A$ and spade $2$ form a “[i]straight flush[/i]”; diamond $10$ and diamond $Q$ are not a “[i]straight flush[/i]” pair. Determine how many ways of picking thirteen cards out of the deck such that all ranks are included but no “[i]straight flush[/i]” exists in them.

2011 China Team Selection Test, 1

Let $H$ be the orthocenter of an acute trangle $ABC$ with circumcircle $\Gamma$. Let $P$ be a point on the arc $BC$ (not containing $A$) of $\Gamma$, and let $M$ be a point on the arc $CA$ (not containing $B$) of $\Gamma$ such that $H$ lies on the segment $PM$. Let $K$ be another point on $\Gamma$ such that $KM$ is parallel to the Simson line of $P$ with respect to triangle $ABC$. Let $Q$ be another point on $\Gamma$ such that $PQ \parallel BC$. Segments $BC$ and $KQ$ intersect at a point $J$. Prove that $\triangle KJM$ is an isosceles triangle.

2013 Sharygin Geometry Olympiad, 9

Let $T_1$ and $T_2$ be the points of tangency of the excircles of a triangle $ABC$ with its sides $BC$ and $AC$ respectively. It is known that the reflection of the incenter of $ABC$ across the midpoint of $AB$ lies on the circumcircle of triangle $CT_1T_2$. Find $\angle BCA$.

2009 Harvard-MIT Mathematics Tournament, 3

A rectangular piece of paper with side lengths 5 by 8 is folded along the dashed lines shown below, so that the folded flaps just touch at the corners as shown by the dotted lines. Find the area of the resulting trapezoid. [asy] size(150); defaultpen(linewidth(0.8)); draw(origin--(8,0)--(8,5)--(0,5)--cycle,linewidth(1)); draw(origin--(8/3,5)^^(16/3,5)--(8,0),linetype("4 4")); draw(origin--(4,3)--(8,0)^^(8/3,5)--(4,3)--(16/3,5),linetype("0 4")); label("$5$",(0,5/2),W); label("$8$",(4,0),S); [/asy]

2002 USA Team Selection Test, 3

Let $n$ be an integer greater than 2, and $P_1, P_2, \cdots , P_n$ distinct points in the plane. Let $\mathcal S$ denote the union of all segments $P_1P_2, P_2P_3, \dots , P_{n-1}P_{n}$. Determine if it is always possible to find points $A$ and $B$ in $\mathcal S$ such that $P_1P_n \parallel AB$ (segment $AB$ can lie on line $P_1P_n$) and $P_1P_n = kAB$, where (1) $k = 2.5$; (2) $k = 3$.

2006 Polish MO Finals, 3

Let $ABCDEF$ be a convex hexagon satisfying $AC=DF$, $CE=FB$ and $EA=BD$. Prove that the lines connecting the midpoints of opposite sides of the hexagon $ABCDEF$ intersect in one point.

2009 Middle European Mathematical Olympiad, 2

Suppose that we have $ n \ge 3$ distinct colours. Let $ f(n)$ be the greatest integer with the property that every side and every diagonal of a convex polygon with $ f(n)$ vertices can be coloured with one of $ n$ colours in the following way: (i) At least two colours are used, (ii) any three vertices of the polygon determine either three segments of the same colour or of three different colours. Show that $ f(n) \le (n\minus{}1)^2$ with equality for infintely many values of $ n$.

2007 China Girls Math Olympiad, 5

Point $D$ lies inside triangle $ABC$ such that $\angle DAC = \angle DCA = 30^{\circ}$ and $\angle DBA = 60^{\circ}$. Point $E$ is the midpoint of segment $BC$. Point $F$ lies on segment $AC$ with $AF = 2FC$. Prove that $DE \perp EF$.

1993 IberoAmerican, 2

Show that for every convex polygon whose area is less than or equal to $1$, there exists a parallelogram with area $2$ containing the polygon.

2012 Today's Calculation Of Integral, 796

Answer the following questions: (1) Let $a$ be non-zero constant. Find $\int x^2 \cos (a\ln x)dx.$ (2) Find the volume of the solid generated by a rotation of the figures enclosed by the curve $y=x\cos (\ln x)$, the $x$-axis and the lines $x=1,\ x=e^{\frac{\pi}{4}}$ about the $x$-axis.

2007 AIME Problems, 11

Two long cylindrical tubes of the same length but different diameters lie parallel to each other on a flat surface. The larger tube has radius $72$ and rolls along the surface toward the smaller tube, which has radius $24$. It rolls over the smaller tube and continues rolling along the flat surface until it comes to rest on the same point of its circumference as it started, having made one complete revolution. If the smaller tube never moves, and the rolling occurs with no slipping, the larger tube ends up a distance $x$ from where it starts. The distance $x$ can be expressed in the form $a\pi+b\sqrt{c},$ where $a,$ $b,$ and $c$ are integers and $c$ is not divisible by the square of any prime. Find $a+b+c.$

2010 India IMO Training Camp, 7

Let $ABCD$ be a cyclic quadrilaterla and let $E$ be the point of intersection of its diagonals $AC$ and $BD$. Suppose $AD$ and $BC$ meet in $F$. Let the midpoints of $AB$ and $CD$ be $G$ and $H$ respectively. If $\Gamma $ is the circumcircle of triangle $EGH$, prove that $FE$ is tangent to $\Gamma $.

2010 Contests, 2

Let $ABC$ be an acute triangle with orthocentre $H$, and let $M$ be the midpoint of $AC$. The point $C_1$ on $AB$ is such that $CC_1$ is an altitude of the triangle $ABC$. Let $H_1$ be the reflection of $H$ in $AB$. The orthogonal projections of $C_1$ onto the lines $AH_1$, $AC$ and $BC$ are $P$, $Q$ and $R$, respectively. Let $M_1$ be the point such that the circumcentre of triangle $PQR$ is the midpoint of the segment $MM_1$. Prove that $M_1$ lies on the segment $BH_1$.