This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1581

2025 AIME, 9

The parabola with equation $y = x^2 - 4$ is rotated $60^\circ$ counterclockwise around the origin. The unique point in the fourth quadrant where the original parabola and its image intersect has $y$-coordinate $\frac{a - \sqrt{b}}{c}$, where $a$, $b$, and $c$ are positive integers, and $a$ and $c$ are relatively prime. Find $a + b + c$.

2006 Iran Team Selection Test, 3

Let $l,m$ be two parallel lines in the plane. Let $P$ be a fixed point between them. Let $E,F$ be variable points on $l,m$ such that the angle $EPF$ is fixed to a number like $\alpha$ where $0<\alpha<\frac{\pi}2$. (By angle $EPF$ we mean the directed angle) Show that there is another point (not $P$) such that it sees the segment $EF$ with a fixed angle too.

2010 China Girls Math Olympiad, 6

In acute triangle $ABC$, $AB > AC$. Let $M$ be the midpoint of side $BC$. The exterior angle bisector of $\widehat{BAC}$ meet ray $BC$ at $P$. Point $K$ and $F$ lie on line $PA$ such that $MF \perp BC$ and $MK \perp PA$. Prove that $BC^2 = 4 PF \cdot AK$. [asy] defaultpen(fontsize(10)); size(7cm); pair A = (4.6,4), B = (0,0), C = (5,0), M = midpoint(B--C), I = incenter(A,B,C), P = extension(A, A+dir(I--A)*dir(-90), B,C), K = foot(M,A,P), F = extension(M, (M.x, M.x+1), A,P); draw(K--M--F--P--B--A--C); pair point = I; pair[] p={A,B,C,M,P,F,K}; string s = "A,B,C,M,P,F,K"; int size = p.length; real[] d; real[] mult; for(int i = 0; i<size; ++i) { d[i] = 0; mult[i] = 1;} string[] k= split(s,","); for(int i = 0;i<p.length;++i) { label("$"+k[i]+"$",p[i],mult[i]*dir(point--p[i])*dir(d[i])); }[/asy]

2012 Sharygin Geometry Olympiad, 1

In triangle $ABC$ point $M$ is the midpoint of side $AB$, and point $D$ is the foot of altitude $CD$. Prove that $\angle A = 2\angle B$ if and only if $AC = 2 MD$.

2011 Costa Rica - Final Round, 1

Let $ABC$ be a triangle with orthocenter $H$. Let $P,Q,R$ be the reflections of $H$ with respect to sides $BC,AC,AB$, respectively. Show that $H$ is incenter of $PQR$.

2010 Today's Calculation Of Integral, 535

Let $ C$ be the parameterized curve for a given positive number $ r$ and $ 0\leq t\leq \pi$, $ C: \left\{\begin{array}{ll} x \equal{} 2r(t \minus{} \sin t\cos t) & \quad \\ y \equal{} 2r\sin ^ 2 t & \quad \end{array} \right.$ When the point $ P$ moves on the curve $ C$, (1) Find the magnitude of acceleralation of the point $ P$ at time $ t$. (2) Find the length of the locus by which the point $ P$ sweeps for $ 0\leq t\leq \pi$. (3) Find the volume of the solid by rotation of the region bounded by the curve $ C$ and the $ x$-axis about the $ x$-axis. Edited.

2015 Baltic Way, 14

In the non-isosceles triangle $ABC$ an altitude from $A$ meets side $BC$ in $D$ . Let $M$ be the midpoint of $BC$ and let $N$ be the reflection of $M$ in $D$ . The circumcirle of triangle $AMN$ intersects the side $AB$ in $P\ne A$ and the side $AC$ in $Q\ne A$ . Prove that $AN,BQ$ and $CP$ are concurrent.

2014 NIMO Problems, 5

Let $ABC$ be a triangle with $AB = 130$, $BC = 140$, $CA = 150$. Let $G$, $H$, $I$, $O$, $N$, $K$, $L$ be the centroid, orthocenter, incenter, circumenter, nine-point center, the symmedian point, and the de Longchamps point. Let $D$, $E$, $F$ be the feet of the altitudes of $A$, $B$, $C$ on the sides $\overline{BC}$, $\overline{CA}$, $\overline{AB}$. Let $X$, $Y$, $Z$ be the $A$, $B$, $C$ excenters and let $U$, $V$, $W$ denote the midpoints of $\overline{IX}$, $\overline{IY}$, $\overline{IZ}$ (i.e. the midpoints of the arcs of $(ABC)$.) Let $R$, $S$, $T$ denote the isogonal conjugates of the midpoints of $\overline{AD}$, $\overline{BE}$, $\overline{CF}$. Let $P$ and $Q$ denote the images of $G$ and $H$ under an inversion around the circumcircle of $ABC$ followed by a dilation at $O$ with factor $\frac 12$, and denote by $M$ the midpoint of $\overline{PQ}$. Then let $J$ be a point such that $JKLM$ is a parallelogram. Find the perimeter of the convex hull of the self-intersecting $17$-gon $LETSTRADEBITCOINS$ to the nearest integer. A diagram has been included but may not be to scale. [asy] size(6cm); import olympiad; import cse5; pair A = dir(110); pair B = dir(210); pair C = dir(330); pair D = foot(A,B,C); pair E = foot(B,C,A); pair F = foot(C,A,B); pair G = centroid(A,B,C); pair H = orthocenter(A,B,C); pair I = incenter(A,B,C); pair isocon(pair targ) { return extension(A,2*foot(targ,I,A)-targ, C,2*foot(targ,I,C)-targ); } pair O = circumcenter(A,B,C); pair K = isocon(G); pair N = midpoint(O--H); pair U = extension(O,midpoint(B--C),A,I); pair V = extension(O,midpoint(C--A),B,I); pair W = extension(O,midpoint(A--B),C,I); pair X = -I + 2*U; pair Y = -I + 2*V; pair Z = -I + 2*W; pair R = isocon(midpoint(A--D)); pair S = isocon(midpoint(B--E)); pair T = isocon(midpoint(C--F)); pair L = 2*H-O; pair P = 0.5/conj(G); pair Q = 0.5/conj(H); pair M = midpoint(P--Q); pair J = K+M-L; draw(A--B--C--cycle); void draw_cevians(pair target) { draw(A--extension(A,target,B,C)); draw(B--extension(B,target,C,A)); draw(C--extension(C,target,A,B)); } draw_cevians(H); draw_cevians(G); draw_cevians(I); draw(unitcircle); draw(circumcircle(D,E,F)); draw(O--P); draw(O--Q); draw(P--Q); draw(CP(X,foot(X,B,C))); draw(CP(Y,foot(Y,C,A))); draw(CP(Z,foot(Z,A,B))); draw(J--K--L--M); draw(X--Y--Z--cycle); draw(A--X); draw(B--Y); draw(C--Z); draw(A--foot(X,A,B)); draw(A--foot(X,A,C)); draw(B--foot(Y,B,C)); draw(B--foot(Y,B,A)); draw(C--foot(Z,C,A)); draw(C--foot(Z,C,B)); pen p = black; dot(A, p); dot(B, p); dot(C, p); dot(D, p); dot(E, p); dot(F, p); dot(G, p); dot(H, p); dot(I, p); dot(J, p); dot(K, p); dot(L, p); dot(M, p); dot(N, p); dot(O, p); dot(P, p); dot(Q, p); dot(R, p); dot(S, p); dot(T, p); dot(U, p); dot(V, p); dot(W, p); dot(X, p); dot(Y, p); dot(Z, p); [/asy]

2010 China Team Selection Test, 1

Let $\triangle ABC$ be an acute triangle with $AB>AC$, let $I$ be the center of the incircle. Let $M,N$ be the midpoint of $AC$ and $AB$ respectively. $D,E$ are on $AC$ and $AB$ respectively such that $BD\parallel IM$ and $CE\parallel IN$. A line through $I$ parallel to $DE$ intersects $BC$ in $P$. Let $Q$ be the projection of $P$ on line $AI$. Prove that $Q$ is on the circumcircle of $\triangle ABC$.

2013 Iran MO (2nd Round), 1

Let $P$ be a point out of circle $C$. Let $PA$ and $PB$ be the tangents to the circle drawn from $C$. Choose a point $K$ on $AB$ . Suppose that the circumcircle of triangle $PBK$ intersects $C$ again at $T$. Let ${P}'$ be the reflection of $P$ with respect to $A$. Prove that \[ \angle PBT = \angle {P}'KA \]

2013 IberoAmerican, 6

A [i]beautiful configuration[/i] of points is a set of $n$ colored points, such that if a triangle with vertices in the set has an angle of at least $120$ degrees, then exactly 2 of its vertices are colored with the same color. Determine the maximum possible value of $n$.

2010 USA Team Selection Test, 4

Let $ABC$ be a triangle. Point $M$ and $N$ lie on sides $AC$ and $BC$ respectively such that $MN || AB$. Points $P$ and $Q$ lie on sides $AB$ and $CB$ respectively such that $PQ || AC$. The incircle of triangle $CMN$ touches segment $AC$ at $E$. The incircle of triangle $BPQ$ touches segment $AB$ at $F$. Line $EN$ and $AB$ meet at $R$, and lines $FQ$ and $AC$ meet at $S$. Given that $AE = AF$, prove that the incenter of triangle $AEF$ lies on the incircle of triangle $ARS$.

2006 Iran Team Selection Test, 3

Let $l,m$ be two parallel lines in the plane. Let $P$ be a fixed point between them. Let $E,F$ be variable points on $l,m$ such that the angle $EPF$ is fixed to a number like $\alpha$ where $0<\alpha<\frac{\pi}2$. (By angle $EPF$ we mean the directed angle) Show that there is another point (not $P$) such that it sees the segment $EF$ with a fixed angle too.

2005 Uzbekistan National Olympiad, 4

Let $ABCD$ is a cyclic. $K,L,M,N$ are midpoints of segments $AB$, $BC$ $CD$ and $DA$. $H_{1},H_{2},H_{3},H_{4}$ are orthocenters of $AKN$ $KBL$ $LCM$ and $MND$. Prove that $H_{1}H_{2}H_{3}H_{4}$ is a paralelogram.

2002 Czech and Slovak Olympiad III A, 4

Find all pairs of real numbers $a, b$ for which the equation in the domain of the real numbers \[\frac{ax^2-24x+b}{x^2-1}=x\] has two solutions and the sum of them equals $12$.

2003 Bundeswettbewerb Mathematik, 1

The graph of a function $f: \mathbb{R}\to\mathbb{R}$ has two has at least two centres of symmetry. Prove that $f$ can be represented as sum of a linear and periodic funtion.

2005 Georgia Team Selection Test, 2

In triangle $ ABC$ we have $ \angle{ACB} \equal{} 2\angle{ABC}$ and there exists the point $ D$ inside the triangle such that $ AD \equal{} AC$ and $ DB \equal{} DC$. Prove that $ \angle{BAC} \equal{} 3\angle{BAD}$.

2001 All-Russian Olympiad, 3

Let the circle $ {\omega}_{1}$ be internally tangent to another circle $ {\omega}_{2}$ at $ N$.Take a point $ K$ on $ {\omega}_{1}$ and draw a tangent $ AB$ which intersects $ {\omega}_{2}$ at $ A$ and $ B$. Let $M$ be the midpoint of the arc $ AB$ which is on the opposite side of $ N$. Prove that, the circumradius of the $ \triangle KBM$ doesnt depend on the choice of $ K$.

2021 Vietnam TST, 3

Let $ABC$ be a triangle and $N$ be a point that differs from $A,B,C$. Let $A_b$ be the reflection of $A$ through $NB$, and $B_a$ be the reflection of $B$ through $NA$. Similarly, we define $B_c, C_b, A_c, C_a$. Let $m_a$ be the line through $N$ and perpendicular to $B_cC_b$. Define similarly $m_b, m_c$. a) Assume that $N$ is the orthocenter of $\triangle ABC$, show that the respective reflection of $m_a, m_b, m_c$ through the bisector of angles $\angle BNC, \angle CNA, \angle ANB$ are the same line. b) Assume that $N$ is the nine-point center of $\triangle ABC$, show that the respective reflection of $m_a, m_b, m_c$ through $BC, CA, AB$ concur.

2021 Indonesia TST, G

Let $P$ be a point in the plane of $\triangle ABC$, and $\gamma$ a line passing through $P$. Let $A', B', C'$ be the points where the reflections of lines $PA, PB, PC$ with respect to $\gamma$ intersect lines $BC, AC, AB$ respectively. Prove that $A', B', C'$ are collinear.

2010 Today's Calculation Of Integral, 528

Consider a function $ f(x)\equal{}xe^{\minus{}x^3}$ defined on any real numbers. (1) Examine the variation and convexity of $ f(x)$ to draw the garph of $ f(x)$. (2) For a positive number $ C$, let $ D_1$ be the region bounded by $ y\equal{}f(x)$, the $ x$-axis and $ x\equal{}C$. Denote $ V_1(C)$ the volume obtained by rotation of $ D_1$ about the $ x$-axis. Find $ \lim_{C\rightarrow \infty} V_1(C)$. (3) Let $ M$ be the maximum value of $ y\equal{}f(x)$ for $ x\geq 0$. Denote $ D_2$ the region bounded by $ y\equal{}f(x)$, the $ y$-axis and $ y\equal{}M$. Find the volume $ V_2$ obtained by rotation of $ D_2$ about the $ y$-axis.

2011 AIME Problems, 3

Let $L$ be the line with slope $\tfrac{5}{12}$ that contains the point $A=(24,-1)$, and let $M$ be the line perpendicular to line $L$ that contains the point $B=(5,6)$. The original coordinate axes are erased, and line $L$ is made the $x$-axis, and line $M$ the $y$-axis. In the new coordinate system, point $A$ is on the positive $x$-axis, and point $B$ is on the positive $y$-axis. The point $P$ with coordinates $(-14,27)$ in the original system has coordinates $(\alpha,\beta)$ in the new coordinate system. Find $\alpha+\beta$.

2016 Iran Team Selection Test, 2

Let $ABC$ be an arbitrary triangle and $O$ is the circumcenter of $\triangle {ABC}$.Points $X,Y$ lie on $AB,AC$,respectively such that the reflection of $BC$ WRT $XY$ is tangent to circumcircle of $\triangle {AXY}$.Prove that the circumcircle of triangle $AXY$ is tangent to circumcircle of triangle $BOC$.

2005 All-Russian Olympiad Regional Round, 9.6

9.6, 10.6 Construct for each vertex of the trapezium a symmetric point wrt to the diagonal, which doesn't contain this vertex. Prove that if four new points form a quadrilateral then it is a trapezium. ([i]L. Emel'yanov[/i])

2021 Bulgaria National Olympiad, 6

Point $S$ is the midpoint of arc $ACB$ of the circumscribed circle $k$ around triangle $ABC$ with $AC>BC$. Let $I$ be the incenter of triangle $ABC$. Line $SI$ intersects $k$ again at point $T$. Let $D$ be the reflection of $I$ across $T$ and $M$ be the midpoint of side $AB$. Line $IM$ intersects the line through $D$, parallel to $AB$, at point $E$. Prove that $AE=BD$.