Found problems: 1581
1987 Bulgaria National Olympiad, Problem 2
Let there be given a polygon $P$ which is mapped onto itself by two rotations: $\rho_1$ with center $O_1$ and angle $\omega_1$, and $\rho_2$ with center $O_2$ and angle $\omega_2~(0<\omega_i<2\pi)$. Show that the ratio $\frac{\omega_1}{\omega_2}$ is rational.
2011 Uzbekistan National Olympiad, 4
$A$ graph $G$ arises from $G_{1}$ and $G_{2}$ by pasting them along $S$ if $G$ has induced subgraphs $G_{1}$, $G_{2}$ with $G=G_{1}\cup G_{2}$ and $S$ is such that $S=G_{1}\cap G_{2}.$ A is graph is called [i]chordal[/i] if it can be constructed recursively by pasting along complete subgraphs, starting from complete subgraphs. For a graph $G(V,E)$ define its Hilbert polynomial $H_{G}(x)$ to be
$H_{G}(x)=1+Vx+Ex^2+c(K_{3})x^3+c(K_{4})x^4+\ldots+c(K_{w(G)})x^{w(G)},$
where $c(K_{i})$ is the number of $i$-cliques in $G$ and $w(G)$ is the clique number of $G$. Prove that $H_{G}(-1)=0$ if and only if $G$ is chordal or a tree.
2022 Taiwan TST Round 3, G
Let $ABC$ be an acute triangle with orthocenter $H$ and circumcircle $\Omega$. Let $M$ be the midpoint of side $BC$. Point $D$ is chosen from the minor arc $BC$ on $\Gamma$ such that $\angle BAD = \angle MAC$. Let $E$ be a point on $\Gamma$ such that $DE$ is perpendicular to $AM$, and $F$ be a point on line $BC$ such that $DF$ is perpendicular to $BC$. Lines $HF$ and $AM$ intersect at point $N$, and point $R$ is the reflection point of $H$ with respect to $N$.
Prove that $\angle AER + \angle DFR = 180^\circ$.
[i]Proposed by Li4.[/i]
2008 Junior Balkan Team Selection Tests - Romania, 4
Let $ d$ be a line and points $ M,N$ on the $ d$. Circles $ \alpha,\beta,\gamma,\delta$ with centers $ A,B,C,D$ are tangent to $ d$, circles $ \alpha,\beta$ are externally tangent at $ M$, and circles $ \gamma,\delta$ are externally tangent at $ N$. Points $ A,C$ are situated in the same half-plane, determined by $ d$. Prove that if exists an circle, which is tangent to the circles $ \alpha,\beta,\gamma,\delta$ and contains them in its interior, then lines $ AC,BD,MN$ are concurrent or parallel.
2005 Sharygin Geometry Olympiad, 23
Envelop the cube in one layer with five convex pentagons of equal areas.
2013 USAMO, 6
Let $ABC$ be a triangle. Find all points $P$ on segment $BC$ satisfying the following property: If $X$ and $Y$ are the intersections of line $PA$ with the common external tangent lines of the circumcircles of triangles $PAB$ and $PAC$, then \[\left(\frac{PA}{XY}\right)^2+\frac{PB\cdot PC}{AB\cdot AC}=1.\]
2006 Nordic, 1
Points $B,C$ vary on two fixed rays emanating from point $A$ such that $AB+AC$ is constant. Show that there is a point $D$, other than $A$, such that the circumcircle of triangle $ABC$ passes through $D$ for all possible choices of $B, C$.
2014 Tajikistan Team Selection Test, 2
Let $M$be an interior point of triangle $ABC$. Let the line $AM$ intersect the circumcircle of the triangle $MBC$ for the second time at point $D$, the line $BM$ intersect the circumcircle of the triangle $MCA$ for the second time at point $E$, and the line $CM$ intersect the circumcircle of the triangle $MAB$ for the second time at point $F$. Prove that $\frac{AD}{MD} + \frac{BE}{ME} + \frac{CF}{MF} \geq \frac{9}{2}$.
[i]Proposed by Nairy Sedrakyan[/i]
2014 USAMTS Problems, 4:
Nine distinct positive integers are arranged in a circle such that the product of any two non-adjacent numbers in the circle is a multiple of $n$ and the product of any two adjacent numbers in the circle is not a multiple of $n$, where $n$ is a fixed positive integer. Find the smallest possible value for $n$.
2008 Romania National Olympiad, 1
Let $ ABC$ be a triangle and the points $ D\in (BC)$, $ E\in (CA)$, $ F\in (AB)$ such that \[ \frac {BD}{DC} \equal{} \frac {CE}{EA} \equal{} \frac {AF}{FB}.\] Prove that if the circumcenters of the triangles $ DEF$ and $ ABC$ coincide then $ ABC$ is equilateral.
2005 Hungary-Israel Binational, 1
Squares $ABB_{1}A_{2}$ and $BCC_{1}B_{2}$ are externally drawn on the hypotenuse $AB$ and on the leg $BC$ of a right triangle $ABC$ . Show that the lines $CA_{2}$ and $AB_{2}$ meet on the perimeter of a square with the vertices on the perimeter of triangle $ABC .$
2019 Vietnam TST, P3
Given an acute scalene triangle $ABC$ inscribed in circle $(O)$. Let $H$ be its orthocenter and $M$ be the midpoint of $BC$. Let $D$ lie on the opposite rays of $HA$ so that $BC=2DM$. Let $D'$ be the reflection of $D$ through line $BC$ and $X$ be the intersection of $AO$ and $MD$.
a) Show that $AM$ bisects $D'X$.
b) Similarly, we define the points $E,F$ like $D$ and $Y,Z$ like $X$. Let $S$ be the intersection of tangent lines from $B,C$ with respect to $(O)$. Let $G$ be the projection of the midpoint of $AS$ to the line $AO$. Show that there exists a point with the same power to all the circles $(BEY),(CFZ),(SGO)$ and $(O)$.
2008 AIME Problems, 9
A particle is located on the coordinate plane at $ (5,0)$. Define a [i]move[/i] for the particle as a counterclockwise rotation of $ \pi/4$ radians about the origin followed by a translation of $ 10$ units in the positive $ x$-direction. Given that the particle's position after $ 150$ moves is $ (p,q)$, find the greatest integer less than or equal to $ |p|\plus{}|q|$.
2007 Ukraine Team Selection Test, 5
$ AA_{3}$ and $ BB_{3}$ are altitudes of acute-angled $ \triangle ABC$. Points $ A_{1}$ and $ B_{1}$ are second points of intersection lines $ AA_{3}$ and $ BB_{3}$ with circumcircle of $ \triangle ABC$ respectively. $ A_{2}$ and $ B_{2}$ are points on $ BC$ and $ AC$ respectively. $ A_{1}A_{2}\parallel AC$, $ B_{1}B_{2}\parallel BC$. Point $ M$ is midpoint of $ A_{2}B_{2}$. $ \angle BCA \equal{} x$. Find $ \angle A_{3}MB_{3}$.
2013 F = Ma, 15
A uniform rod is partially in water with one end suspended, as shown in figure. The density of the rod is $5/9$ that of water. At equilibrium, what portion of the rod is above water?
$\textbf{(A) } 0.25\\
\textbf{(B) } 0.33\\
\textbf{(C) } 0.5\\
\textbf{(D) } 0.67\\
\textbf{(E) } 0.75$
2020 Latvia Baltic Way TST, 10
Given $\triangle ABC$ and it's orthocenter $H$. Point $P$ is arbitrary chosen on the side $ BC$. Let $Q$ and $R$ be reflections of point $P$ over sides $AB, AC$. It is given that points $Q,H,R$ are collinear. Prove that $\triangle ABC$ is right angled.
1965 AMC 12/AHSME, 4
Line $ l_2$ intersects line $ l_1$ and line $ l_3$ is parallel to $ l_1$. The three lines are distinct and lie in a plane. The number of points equidistant from all three lines is:
$ \textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 4 \qquad \textbf{(E)}\ 8$
2014 Contests, 3
Let $\Gamma_1$ be a circle and $P$ a point outside of $\Gamma_1$. The tangents from $P$ to $\Gamma_1$ touch the circle at $A$ and $B$. Let $M$ be the midpoint of $PA$ and $\Gamma_2$ the circle through $P$, $A$ and $B$. Line $BM$ cuts $\Gamma_2$ at $C$, line $CA$ cuts $\Gamma_1$ at $D$, segment $DB$ cuts $\Gamma_2$ at $E$ and line $PE$ cuts $\Gamma_1$ at $F$, with $E$ in segment $PF$. Prove lines $AF$, $BP$, and $CE$ are concurrent.
2007 Iran MO (3rd Round), 1
Let $ ABC$, $ l$ and $ P$ be arbitrary triangle, line and point. $ A',B',C'$ are reflections of $ A,B,C$ in point $ P$. $ A''$ is a point on $ B'C'$ such that $ AA''\parallel l$. $ B'',C''$ are defined similarly. Prove that $ A'',B'',C''$ are collinear.
2007 Iran Team Selection Test, 1
In an isosceles right-angled triangle shaped billiards table , a ball starts moving from one of the vertices adjacent to hypotenuse. When it reaches to one side then it will reflect its path. Prove that if we reach to a vertex then it is not the vertex at initial position
[i]By Sam Nariman[/i]
2013 Iran MO (2nd Round), 2
Suppose a $m \times n$ table. We write an integer in each cell of the table. In each move, we chose a column, a row, or a diagonal (diagonal is the set of cells which the difference between their row number and their column number is constant) and add either $+1$ or $-1$ to all of its cells. Prove that if for all arbitrary $3 \times 3$ table we can change all numbers to zero, then we can change all numbers of $m \times n$ table to zero.
([i]Hint[/i]: First of all think about it how we can change number of $ 3 \times 3$ table to zero.)
2004 Vietnam Team Selection Test, 3
In the plane, there are two circles $\Gamma_1, \Gamma_2$ intersecting each other at two points $A$ and $B$. Tangents of $\Gamma_1$ at $A$ and $B$ meet each other at $K$. Let us consider an arbitrary point $M$ (which is different of $A$ and $B$) on $\Gamma_1$. The line $MA$ meets $\Gamma_2$ again at $P$. The line $MK$ meets $\Gamma_1$ again at $C$. The line $CA$ meets $\Gamma_2 $ again at $Q$. Show that the midpoint of $PQ$ lies on the line $MC$ and the line $PQ$ passes through a fixed point when $M$ moves on $\Gamma_1$.
[color=red][Moderator edit: This problem was also discussed on http://www.mathlinks.ro/Forum/viewtopic.php?t=21414 .][/color]
2001 Brazil Team Selection Test, Problem 4
Let $ABC$ be a triangle with circumcenter $O$. Let $P$ and $Q$ be points on the segments $AB$ and $AC$, respectively, such that $BP : PQ : QC = AC : CB : BA$.
Prove that the points $A$, $P$, $Q$ and $O$ lie on one circle.
[i]Alternative formulation.[/i] Let $O$ be the center of the circumcircle of a triangle $ABC$. If $P$ and $Q$ are points on the sides $AB$ and $AC$, respectively, satisfying $\frac{BP}{PQ}=\frac{CA}{BC}$ and $\frac{CQ}{PQ}=\frac{AB}{BC}$, then show that the points $A$, $P$, $Q$ and $O$ lie on one circle.
2011 ELMO Shortlist, 3
Let $ABC$ be a triangle. Draw circles $\omega_A$, $\omega_B$, and $\omega_C$ such that $\omega_A$ is tangent to $AB$ and $AC$, and $\omega_B$ and $\omega_C$ are defined similarly. Let $P_A$ be the insimilicenter of $\omega_B$ and $\omega_C$. Define $P_B$ and $P_C$ similarly. Prove that $AP_A$, $BP_B$, and $CP_C$ are concurrent.
[i]Tom Lu.[/i]
2013 Today's Calculation Of Integral, 897
Find the volume $V$ of the solid formed by a rotation of the region enclosed by the curve $y=2^{x}-1$ and two lines $x=0,\ y=1$ around the $y$ axis.