This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2023 Saint Petersburg Mathematical Olympiad, 6

Given is a triangle $ABC$. Let $X$ be the reflection of $B$ in $AC$ and $Y$ is the reflection of $C$ in $AB$. The tangent to $(XAY)$ at $A$ meets $XY$ and $BC$ at $E, F$. Show that $AE=AF$.

2018 Centroamerican and Caribbean Math Olympiad, 2

Let $\Delta ABC$ be a triangle inscribed in the circumference $\omega$ of center $O$. Let $T$ be the symmetric of $C$ respect to $O$ and $T'$ be the reflection of $T$ respect to line $AB$. Line $BT'$ intersects $\omega$ again at $R$. The perpendicular to $CT$ through $O$ intersects line $AC$ at $L$. Let $N$ be the intersection of lines $TR$ and $AC$. Prove that $\overline{CN}=2\overline{AL}$.

2021 Science ON grade VIII, 3

$ABCD$ is a scalene tetrahedron and let $G$ be its baricentre. A plane $\alpha$ passes through $G$ such that it intersects neither the interior of $\Delta BCD$ nor its perimeter. Prove that $$\textnormal{dist}(A,\alpha)=\textnormal{dist}(B,\alpha)+\textnormal{dist}(C,\alpha)+\textnormal{dist}(D,\alpha).$$ [i] (Adapted from folklore)[/i]

2009 International Zhautykov Olympiad, 2

Given a quadrilateral $ ABCD$ with $ \angle B\equal{}\angle D\equal{}90^{\circ}$. Point $ M$ is chosen on segment $ AB$ so taht $ AD\equal{}AM$. Rays $ DM$ and $ CB$ intersect at point $ N$. Points $ H$ and $ K$ are feet of perpendiculars from points $ D$ and $ C$ to lines $ AC$ and $ AN$, respectively. Prove that $ \angle MHN\equal{}\angle MCK$.

1997 Poland - Second Round, 2

Tags: geometry
Let P be a point inside triangle ABC such that 3<ABP = 3<ACP = <ABC + <ACB. Prove that AB/(AC + PB) = AC/(AB + PC).

1998 Tournament Of Towns, 5

The sum of the length, width, and height of a rectangular parallelepiped will be called its size. Can it happen that one rectangular parallelepiped contains another one of greater size? (A Shen)

2005 Sharygin Geometry Olympiad, 11.2

Convex quadrilateral $ABCD$ is given. Lines $BC$ and $AD$ intersect at point $O$, with $B$ lying on the segment $OC$, and $A$ on the segment $OD$. $I$ is the center of the circle inscribed in the $OAB$ triangle, $J$ is the center of the circle exscribed in the triangle $OCD$ touching the side of $CD$ and the extensions of the other two sides. The perpendicular from the midpoint of the segment $IJ$ on the lines $BC$ and $AD$ intersect the corresponding sides of the quadrilateral (not the extension) at points $X$ and $Y$. Prove that the segment $XY$ divides the perimeter of the quadrilateral$ABCD$ in half, and from all segments with this property and ends on $BC$ and $AD$, segment $XY$ has the smallest length.

Novosibirsk Oral Geo Oly VIII, 2017.5

Point $K$ is marked on the diagonal $AC$ in rectangle $ABCD$ so that $CK = BC$. On the side $BC$, point $M$ is marked so that $KM = CM$. Prove that $AK + BM = CM$.

1986 AMC 12/AHSME, 18

Tags: conic , ellipse , geometry
A plane intersects a right circular cylinder of radius $1$ forming an ellipse. If the major axis of the ellipse of $50\%$ longer than the minor axis, the length of the major axis is $ \textbf{(A)}\ 1\qquad\textbf{(B)}\ \frac{3}{2}\qquad\textbf{(C)}\ 2\qquad\textbf{(D)}\ \frac{9}{4}\qquad\textbf{(E)}\ 3$

2009 Italy TST, 2

Two circles $O_1$ and $O_2$ intersect at $M,N$. The common tangent line nearer to $M$ of the two circles touches $O_1,O_2$ at $A,B$ respectively. Let $C,D$ be the symmetric points of $A,B$ with respect to $M$ respectively. The circumcircle of triangle $DCM$ intersects circles $O_1$ and $O_2$ at points $E,F$ respectively which are distinct from $M$. Prove that the circumradii of the triangles $MEF$ and $NEF$ are equal.

2021 JBMO Shortlist, G1

Tags: geometry
Let $ABC$ be an acute scalene triangle with circumcenter $O$. Let $D$ be the foot of the altitude from $A$ to the side $BC$. The lines $BC$ and $AO$ intersect at $E$. Let $s$ be the line through $E$ perpendicular to $AO$. The line $s$ intersects $AB$ and $AC$ at $K$ and $L$, respectively. Denote by $\omega$ the circumcircle of triangle $AKL$. Line $AD$ intersects $\omega$ again at $X$. Prove that $\omega$ and the circumcircles of triangles $ABC$ and $DEX$ have a common point.

2017 Macedonia JBMO TST, 4

In triangle $ABC$, the points $X$ and $Y$ are chosen on the arc $BC$ of the circumscribed circle of $ABC$ that doesn't contain $A$ so that $\measuredangle BAX = \measuredangle CAY$. Let $M$ be the midpoint of the segment $AX$. Show that $$BM + CM > AY.$$

2018 Puerto Rico Team Selection Test, 2

Let $ABC$ be an acute triangle and let $P,Q$ be points on $BC$ such that $\angle QAC =\angle ABC$ and $\angle PAB = \angle ACB$. We extend $AP$ to $M$ so that $ P$ is the midpoint of $AM$ and we extend $AQ$ to $N$ so that $Q$ is the midpoint of $AN$. If T is the intersection point of $BM$ and $CN$, show that quadrilateral $ABTC$ is cyclic.

2000 France Team Selection Test, 2

Tags: geometry
$A,B,C,D$ are points on a circle in that order. Prove that $|AB-CD|+|AD-BC| \ge 2|AC-BD|$.

2017 Brazil Team Selection Test, 2

Let $ABC$ be a triangle with $AB = AC \neq BC$ and let $I$ be its incentre. The line $BI$ meets $AC$ at $D$, and the line through $D$ perpendicular to $AC$ meets $AI$ at $E$. Prove that the reflection of $I$ in $AC$ lies on the circumcircle of triangle $BDE$.

2005 JHMT, 3

Tags: geometry
Isosceles triangle $ABC$ has angle $\angle BAC = 135^o$ and $AB = 2$. What is its area?

Novosibirsk Oral Geo Oly IX, 2016.1

In the quadrilateral $ABCD$, angles $B$ and $C$ are equal to $120^o$, $AB = CD = 1$, $CB = 4$. Find the length $AD$.

2006 All-Russian Olympiad Regional Round, 11.4

The bisectors of angles $A$ and $C$ of triangle $ABC$ intersect its sides at points $A_1$ and $C_1$, and the circumcircle of this triangle is at points $A_0$ and $C_0$, respectively. Lines $A_1C_1$ and $A_0C_0$ intersect at point P. Prove that the segment connecting $P$ to the center of the incircle of triangle $ABC$ is parallel to $AC$.

2010 Sharygin Geometry Olympiad, 20

The incircle of an acute-angled triangle $ABC$ touches $AB, BC, CA$ at points $C_1, A_1, B_1$ respectively. Points $A_2, B_2$ are the midpoints of the segments $B_1C_1, A_1C_1$ respectively. Let $P$ be a common point of the incircle and the line $CO$, where $O$ is the circumcenter of triangle $ABC.$ Let also $A'$ and $B'$ be the second common points of $PA_2$ and $PB_2$ with the incircle. Prove that a common point of $AA'$ and $BB'$ lies on the altitude of the triangle dropped from the vertex $C.$

1998 Singapore Senior Math Olympiad, 2

Let $C$ be a circle in the plane. Let $C_1$ and $C_2$ be two non-intersecting circles touching $C$ internally at points $A$ and $B$ respectively (Fig. ). Suppose that $D$ and $E$ are two points on $C_1$ and $C_2$ respectively such that $DE$ is a common tangent of $C_1$ and $C_2$, and both $C_1$ and C2 are on the same side of $DE$. Let $F$ be the intersection point of $AD$ and $BE$. Prove that $F$ lies on $C$. [img]https://cdn.artofproblemsolving.com/attachments/f/c/5c733db462ef8ec3d3f82bbb762f7f087fbd3d.png[/img]

2005 All-Russian Olympiad, 3

Let $A',\,B',\,C'$ be points, in which excircles touch corresponding sides of triangle $ABC$. Circumcircles of triangles $A'B'C,\,AB'C',\,A'BC'$ intersect a circumcircle of $ABC$ in points $C_1\ne C,\,A_1\ne A,\,B_1\ne B$ respectively. Prove that a triangle $A_1B_1C_1$ is similar to a triangle, formed by points, in which incircle of $ABC$ touches its sides.

2005 China Girls Math Olympiad, 2

Find all ordered triples $ (x, y, z)$ of real numbers such that \[ 5 \left(x \plus{} \frac{1}{x} \right) \equal{} 12 \left(y \plus{} \frac{1}{y} \right) \equal{} 13 \left(z \plus{} \frac{1}{z} \right),\] and \[ xy \plus{} yz \plus{} zy \equal{} 1.\]

2004 Kurschak Competition, 1

Given is a triangle $ABC$, its circumcircle $\omega$, and a circle $k$ that touches $\omega$ from the outside, and also touches rays $AB$ and $AC$ in $P$ and $Q$, respectively. Prove that the $A$-excenter of $\triangle ABC$ is the midpoint of $\overline{PQ}$.

2018 ABMC, Accuracy

[b]p1.[/b] Suppose that $a \oplus b = ab - a - b$. Find the value of $$((1 \oplus 2) \oplus (3 \oplus 4)) \oplus 5.$$ [b]p2.[/b] Neethin scores a $59$ on his number theory test. He proceeds to score a $17$, $23$, and $34$ on the next three tests. What score must he achieve on his next test to earn an overall average of $60$ across all five tests? [b]p3.[/b] Consider a triangle with side lengths $28$ and $39$. Find the number of possible integer lengths of the third side. [b]p4.[/b] Nithin is thinking of a number. He says that it is an odd two digit number where both of its digits are prime, and that the number is divisible by the sum of its digits. What is the sum of all possible numbers Nithin might be thinking of? [b]p5.[/b] Dora sees a fire burning on the dance floor. She calls her friends to warn them to stay away. During the first pminute Dora calls Poonam and Serena. During the second minute, Poonam and Serena call two more friends each, and so does Dora. This process continues, with each person calling two new friends every minute. How many total people would know of the fire after $6$ minutes? [b]p6.[/b] Charlotte writes all the positive integers $n$ that leave a remainder of $2$ when $2018$ is divided by $n$. What is the sum of the numbers that she writes? [b]p7.[/b] Consider the following grid. Stefan the bug starts from the origin, and can move either to the right, diagonally in the positive direction, or upwards. In how many ways can he reach $(5, 5)$? [img]https://cdn.artofproblemsolving.com/attachments/9/9/b9fdfdf604762ec529a1b90d663e289b36b3f2.png[/img] [b]p8.[/b] Let $a, b, c$ be positive numbers where $a^2 + b^2 + c^2 = 63$ and $2a + 3b + 6c = 21\sqrt7$. Find $\left( \frac{a}{c}\right)^{\frac{a}{b}} $. [b]p9.[/b] What is the sum of the distinct prime factors of $12^5 + 12^4 + 1$? [b]p10.[/b] Allen starts writing all permutations of the numbers $1$, $2$, $3$, $4$, $5$, $6$ $7$, $8$, $9$, $10$ on a blackboard. At one point he writes the permutation $9$, $4$, $3$, $1$, $2$, $5$, $6$, $7$, $8$, $10$. David points at the permutation and observes that for any two consecutive integers $i$ and $i+1$, all integers that appear in between these two integers in the permutation are all less than $i$. For example, $4$ and $5$ have only the numbers $3$, $1$, $2$ in between them. How many of the $10!$ permutations on the board satisfy this property that David observes? [b]p11.[/b] (Estimation) How many positive integers less than $2018$ can be expressed as the sum of $3$ square numbers? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2008 Alexandru Myller, 4

Let $ C_1,C_2 $ be two distinct concentric circles, and $ BA $ be a diameter of $ C_1. $ Choose the points $ M,N $ on $ C_1,C_2, $ respectively, but not on the line $ BA. $ [b]a)[/b] Show that there are unique points $ P,Q $ on $ MA,MB, $ respectively, so that $ N $ is the middle of $ PQ. $ [b]b)[/b] Prove that the value $ AP^2+BQ^2 $ does not depend on $ M,N. $ [i]Mihai Piticari, Mihail Bălună[/i]