This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2004 India IMO Training Camp, 1

Prove that in any triangle $ABC$, \[ 0 < \cot { \left( \frac{A}{4} \right)} - \tan{ \left( \frac{B}{4} \right) } - \tan{ \left( \frac{C}{4} \right) } - 1 < 2 \cot { \left( \frac{A}{2} \right) }. \]

2008 Brazil Team Selection Test, 1

Let $AB$ be a chord, not a diameter, of a circle with center $O$. The smallest arc $AB$ is divided into three congruent arcs $AC$, $CD$, $DB$. The chord $AB$ is also divided into three equal segments $AC'$, $C'D'$, $D'B$. Let $P$ be the intersection point of between the lines $CC'$ and $DD'$. Prove that $\angle APB = \frac13 \angle AOB$.

2011 Spain Mathematical Olympiad, 3

Let $A$, $B$, $C$, $D$ be four points in space not all lying on the same plane. The segments $AB$, $BC$, $CD$, and $DA$ are tangent to the same sphere. Prove that their four points of tangency are coplanar.

2022 Malaysia IMONST 2, 1

Tags: geometry
Given a polygon $ABCDEFGHIJ$. How many diagonals does the polygon have?

2012 AMC 8, 6

Tags: area , geometry
A rectangular photograph is placed in a frame that forms a border two inches wide on all sides of the photograph. The photograph measures 8 inches high and 10 inches wide. What is the area of the border, in square inches? $\textbf{(A)}\hspace{.05in}36 \qquad \textbf{(B)}\hspace{.05in}40 \qquad \textbf{(C)}\hspace{.05in}64 \qquad \textbf{(D)}\hspace{.05in}72 \qquad \textbf{(E)}\hspace{.05in}88 $

1987 India National Olympiad, 9

Prove that any triangle having two equal internal angle bisectors (each measured from a vertex to the opposite side) is isosceles.

2011 Oral Moscow Geometry Olympiad, 6

One triangle lies inside another. Prove that at least one of the two smallest sides (out of six) is the side of the inner triangle.

2014 Canadian Mathematical Olympiad Qualification, 6

Given a triangle $A, B, C, X$ is on side $AB$, $Y$ is on side $AC$, and $P$ and $Q$ are on side $BC$ such that $AX = AY , BX = BP$ and $CY = CQ$. Let $XP$ and $YQ$ intersect at $T$. Prove that $AT$ passes through the midpoint of $PQ$.

1963 AMC 12/AHSME, 12

Three vertices of parallelogram $PQRS$ are $P(-3,-2)$, $Q(1,-5)$, $R(9,1)$ with $P$ and $R$ diagonally opposite. The sum of the coordinates of vertex $S$ is: $\textbf{(A)}\ 13 \qquad \textbf{(B)}\ 12 \qquad \textbf{(C)}\ 11 \qquad \textbf{(D)}\ 10 \qquad \textbf{(E)}\ 9$

Swiss NMO - geometry, 2004.1

Let $\Gamma$ be a circle and $P$ a point outside of $\Gamma$ . A tangent from $P$ to the circle intersects it in $A$. Another line through $P$ intersects $\Gamma$ at the points $B$ and $C$. The bisector of $\angle APB$ intersects $AB$ at $D$ and $AC$ at $E$. Prove that the triangle $ADE$ is isosceles.

Novosibirsk Oral Geo Oly VII, 2019.2

Kikoriki live on the shores of a pond in the form of an equilateral triangle with a side of $600$ m, Krash and Wally live on the same shore, $300$ m from each other. In summer, Dokko to Krash walk $900$ m, and Wally to Rosa - also $900$ m. Prove that in winter, when the pond freezes and it will be possible to walk directly on the ice, Dokko will walk as many meters to Krash as Wally to Rosa. [url=https://en.wikipedia.org/wiki/Kikoriki]about Kikoriki/GoGoRiki / Smeshariki [/url]

2005 Morocco TST, 4

A convex quadrilateral $ABCD$ has an incircle. In each corner a circle is inscribed that also externally touches the two circles inscribed in the adjacent corners. Show that at least two circles have the same size.

2019 Romanian Master of Mathematics Shortlist, G2

Let $ABC$ be an acute-angled triangle. The line through $C$ perpendicular to $AC$ meets the external angle bisector of $\angle ABC$ at $D$. Let $H$ be the foot of the perpendicular from $D$ onto $BC$. The point $K$ is chosen on $AB$ so that $KH \parallel AC$. Let $M$ be the midpoint of $AK$. Prove that $MC = MB + BH$. Giorgi Arabidze, Georgia,

1991 French Mathematical Olympiad, Problem 3

Let $S$ be a fixed point on a sphere $\Sigma$ with center $\Omega$. Consider all tetrahedra $SABC$ inscribed in $\Sigma$ such that $SA,SB,SC$ are pairwise orthogonal. (a) Prove that all the planes $ABC$ pass through a single point. (b) In one such tetrahedron, $H$ and $O$ are the orthogonal projections of $S$ and $\Omega$ onto the plane $ABC$, respectively. Let $R$ denote the circumradius of $\triangle ABC$. Prove that $R^2=OH^2+2SH^2$.

1987 Austrian-Polish Competition, 1

Three pairwise orthogonal chords of a sphere $S$ are drawn through a given point $P$ inside $S$. Prove that the sum of the squares of their lengths does not depend on their directions.

2009 Tournament Of Towns, 4

Tags: geometry
Let $ABCD$ be a rhombus. $P$ is a point on side $ BC$ and $Q$ is a point on side $CD$ such that $BP = CQ$. Prove that centroid of triangle $APQ$ lies on the segment $BD.$ [i](6 points)[/i]

2020 Iranian Geometry Olympiad, 4

Tags: geometry
Let $P$ be an arbitrary point in the interior of triangle $\triangle ABC$. Lines$\overline{BP}$ and $\overline{CP}$ intersect $\overline{AC}$ and $\overline{AB}$ at $E$ and $F$, respectively. Let $K$ and $L$ be the midpoints of the segments $BF$ and $CE$, respectively. Let the lines through $L$ and $K$ parallel to $\overline{CF}$ and $\overline{BE}$ intersect $\overline{BC}$ at $S$ and $T$, respectively; moreover, denote by $M$ and $N$ the reflection of $S$ and $T$ over the points $L$ and $K$, respectively. Prove that as $P$ moves in the interior of triangle $\triangle ABC$, line $\overline{MN}$ passes through a fixed point. [i]Proposed by Ali Zamani[/i]

2025 Sharygin Geometry Olympiad, 20

Let $H$ be the orthocenter of a triangle $ABC$, and $M$, $N$ be the midpoints of segments $BC$, $AH$ respectively. The perpendicular from $N$ to $MH$ meets $BC$ at point $A^{\prime}$. Points $B^{\prime}$ and $C^{\prime}$ are defined similarly. Prove that $A^{\prime}$, $B^{\prime}$, $C^{\prime}$ are collinear. Proposed by: F.Ivlev

1955 Moscow Mathematical Olympiad, 301

Given a trihedral angle with vertex $O$. Find whether there is a planar section $ABC$ such that the angles $\angle OAB$, $\angle OBA$, $\angle OBC$, $\angle OCB$, $\angle OAC$, $\angle OCA$ are acute.

2013 China Northern MO, 6

As shown in figure , it is known that $M$ is the midpoint of side $BC$ of $\vartriangle ABC$. $\odot O$ passes through points $A, C$ and is tangent to $AM$. The extension of the segment $BA$ intersects $\odot O$ at point $D$. The lines $CD$ and $MA$ intersect at the point $P$. Prove that $PO \perp BC$. [img]https://cdn.artofproblemsolving.com/attachments/8/a/da3570ec7eb0833c7a396e22ffac2bd8902186.png[/img]

Math Hour Olympiad, Grades 8-10, 2010

[u]Round 1 [/u] [b]p1.[/b] In the convex quadrilateral $ABCD$ with diagonals $AC$ and $BD$, you know that angle $BAC$ is congruent to angle $CBD$, and that angle $ACD$ is congruent to angle $ADB$. Show that angle $ABC$ is congruent to angle $ADC$. [img]https://cdn.artofproblemsolving.com/attachments/5/d/41cd120813d5541dc73c5d4a6c86cc82747fcc.png[/img] [b]p2.[/b] In how many different ways can you place $12$ chips in the squares of a $4 \times 4$ chessboard so that (a) there is at most one chip in each square, and (b) every row and every column contains exactly three chips. [b]p3.[/b] Students from Hufflepuff and Ravenclaw were split into pairs consisting of one student from each house. The pairs of students were sent to Honeydukes to get candy for Father's Day. For each pair of students, either the Hufflepuff student brought back twice as many pieces of candy as the Ravenclaw student or the Ravenclaw student brought back twice as many pieces of candy as the Hufflepuff student. When they returned, Professor Trelawney determined that the students had brought back a total of $1000$ pieces of candy. Could she have possibly been right? Why or why not? Assume that candy only comes in whole pieces (cannot be divided into parts). [b]p4.[/b] While you are on a hike across Deception Pass, you encounter an evil troll, who will not let you across the bridge until you solve the following puzzle. There are six stones, two colored red, two colored yellow, and two colored green. Aside from their colors, all six stones look and feel exactly the same. Unfortunately, in each colored pair, one stone is slightly heavier than the other. Each of the lighter stones has the same weight, and each of the heavier stones has the same weight. Using a balance scale to make TWO measurements, decide which stone of each color is the lighter one. [b]p5.[/b] Alex, Bob and Chad are playing a table tennis tournament. During each game, two boys are playing each other and one is resting. In the next game the boy who lost a game goes to rest, and the boy who was resting plays the winner. By the end of tournament, Alex played a total of $10$ games, Bob played $15$ games, and Chad played $17$ games. Who lost the second game? [u]Round 2 [/u] [b]p6.[/b] Consider a set of finitely many points on the plane such that if we choose any three points $A,B,C$ from the set, then the area of the triangle $ABC$ is less than $1$. Show that all of these points can be covered by a triangle whose area is less than $4$. [b]p7.[/b] A palindrome is a number that is the same when read forward and backward. For example, $1771$ and $23903030932$ are palindromes. Can the number obtained by writing the numbers from $1$ to $n$ in order be a palindrome for some $n > 1$ ? (For example, if $n = 11$, the number obtained is $1234567891011$, which is not a palindrome.) PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2005 Sharygin Geometry Olympiad, 3

Given a circle and a point $K$ inside it. An arbitrary circle equal to the given one and passing through the point $K$ has a common chord with the given circle. Find the geometric locus of the midpoints of these chords.

2016 Iran MO (3rd Round), 2

Tags: geometry
Let $ABC$ be an arbitrary triangle. Let $E,E$ be two points on $AB,AC$ respectively such that their distance to the midpoint of $BC$ is equal. Let $P$ be the second intersection of the triangles $ABC,AEF$ circumcircles . The tangents from $E,F$ to the circumcircle of $AEF$ intersect each other at $K$. Prove that : $\angle KPA = 90$

2014 Puerto Rico Team Selection Test, 1

Let $ABCD$ be a parallelogram with $AB>BC$ and $\angle DAB$ less than $\angle ABC$. The perpendicular bisectors of sides $AB$ and $BC$ intersect at the point $M$ lying on the extension of $AD$. If $\angle MCD=15^{\circ}$, find the measure of $\angle ABC$

2007 Serbia National Math Olympiad, 2

In a scalene triangle $ABC , AD, BE , CF$ are the angle bisectors $(D \in BC , E \in AC , F \in AB)$. Points $K_{a}, K_{b}, K_{c}$ on the incircle of triangle $ABC$ are such that $DK_{a}, EK_{b}, FK_{c}$ are tangent to the incircle and $K_{a}\not\in BC , K_{b}\not\in AC , K_{c}\not\in AB$. Let $A_{1}, B_{1}, C_{1}$ be the midpoints of sides $BC , CA, AB$ , respectively. Prove that the lines $A_{1}K_{a}, B_{1}K_{b}, C_{1}K_{c}$ intersect on the incircle of triangle $ABC$.