This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2012 HMNT, 7

Let $A_1A_2 . . .A_{100}$ be the vertices of a regular $100$-gon. Let $\pi$ be a randomly chosen permutation of the numbers from $1$ through $100$. The segments $A_{\pi (1)}A_{\pi (2)}$, $A_{\pi (2)}A_{\pi (3)}$, $...$ ,$A_{\pi (99)}A_{\pi (100)}, A_{\pi (100)}A_{\pi (1)}$ are drawn. Find the expected number of pairs of line segments that intersect at a point in the interior of the $100$-gon.

2002 Mid-Michigan MO, 5-6

[b]p1.[/b] Find all triples of positive integers such that the sum of their reciprocals is equal to one. [b]p2.[/b] Prove that $a(a + 1)(a + 2)(a + 3)$ is divisible by $24$. [b]p3.[/b] There are $20$ very small red chips and some blue ones. Find out whether it is possible to put them on a large circle such that (a) for each chip positioned on the circle the antipodal position is occupied by a chip of different color; (b) there are no two neighboring blue chips. [b]p4.[/b] A $12$ liter container is filled with gasoline. How to split it in two equal parts using two empty $5$ and $8$ liter containers? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2022 MOAA, 11

Let a [i]triplet [/i] be some set of three distinct pairwise parallel lines. $20$ triplets are drawn on a plane. Find the maximum number of regions these $60$ lines can divide the plane into.

1969 IMO Longlists, 16

$(CZS 5)$ A convex quadrilateral $ABCD$ with sides $AB = a, BC = b, CD = c, DA = d$ and angles $\alpha = \angle DAB, \beta = \angle ABC, \gamma = \angle BCD,$ and $\delta = \angle CDA$ is given. Let $s = \frac{a + b + c +d}{2}$ and $P$ be the area of the quadrilateral. Prove that $P^2 = (s - a)(s - b)(s - c)(s - d) - abcd \cos^2\frac{\alpha +\gamma}{2}$

2010 Indonesia MO, 2

Given an acute triangle $ABC$ with $AC>BC$ and the circumcenter of triangle $ABC$ is $O$. The altitude of triangle $ABC$ from $C$ intersects $AB$ and the circumcircle at $D$ and $E$, respectively. A line which passed through $O$ which is parallel to $AB$ intersects $AC$ at $F$. Show that the line $CO$, the line which passed through $F$ and perpendicular to $AC$, and the line which passed through $E$ and parallel with $DO$ are concurrent. [i]Fajar Yuliawan, Bandung[/i]

2006 MOP Homework, 7

Circles $\omega_1$ and $\omega_2$ are externally tangent to each other at $T$. Let $X$ be a point on circle $\omega_1$. Line $l_1$ is tangent to circle $\omega_1$ and $X$, and line $l$ intersects circle $\omega_2$ at $A$ and $B$. Line $XT$ meets circle $\omega$ at $S$. Point $C$ lies on arc $TS$ (of circle $\omega_2$, not containing points $A$ and $B$). Point $Y$ lies on circle $\omega_1$ and line $YC$ is tangent to circle $\omega_1$. Let $I$ be the intersection of lines $XY$ ad $SC$. Prove that... a) points $C$, $T$, $Y$, $I$ lie on a circle (B) $I$ is an excenter of triangle $ABC$.

2023 Stanford Mathematics Tournament, 1

Tags: geometry
Let $A_1A_2 . . . A_{12}$ be a regular dodecagon. Equilateral triangles $\vartriangle A_1A_2B_1$, $\vartriangle A_2A_3B_2$, $. . . $, and $\vartriangle A_{12}A_1B_{12}$ are drawn such that points $B_1$, $B_2$,$ . . . $, and B_{12} lie outside dodecagon $A_1A_2 . . . A_{12}$. Then, equilateral triangles $\vartriangle A_1A_2C_1$, $\vartriangle A_2A_3C_2$, $. . .$ , and $\vartriangle A_{12}A_1C_{12}$ are drawn such that points $C_1$, $C_2$, $. . .$ , and $C_{12}$ lie inside dodecagon $A_1A_2 . . . A_{12}$. Compute the ratio of the area of dodecagon $B_1B_2 . . . B_{12}$ to the area of dodecagon $C_1C_2 . . . C_{12}$.

2013 Czech And Slovak Olympiad IIIA, 5

Given the parallelogram $ABCD$ such that the feet $K, L$ of the perpendiculars from point $D$ on the sides $AB, BC$ respectively are internal points. Prove that $KL \parallel AC$ when $|\angle BCA| + |\angle ABD| = |\angle BDA| + |\angle ACD|$.

2013 BMT Spring, 2

Tags: geometry
Two rays start from a common point and have an angle of $60$ degrees. Circle $C$ is drawn with radius $42$ such that it is tangent to the two rays. Find the radius of the circle that has radius smaller than circle $C$ and is also tangent to $C$ and the two rays.

2023 Bulgarian Autumn Math Competition, 12.2

Tags: geometry
Given is an acute triangle $ABC$ with incenter $I$ and the incircle touches $BC, CA, AB$ at $D, E, F$. The circle with center $C$ and radius $CE$ meets $EF$ for the second time at $K$. If $X$ is the $C$-excircle touchpoint with $AB$, show that $CX, KD, IF$ concur.

2008 Switzerland - Final Round, 7

An $8 \times 11$ rectangle of unit squares somehow becomes disassembled into $21$ contiguous parts . Prove that at least two of these parts, except for rotations and reflections have the same shape.

Croatia MO (HMO) - geometry, 2023.7

Given is an acute-angled triangle $ABC$ in which holds $|BC|: |AC| = 3:$2. Let $D$ be the midpoint of the side $\overline{AC}$, and P the midpoint of the segment $\overline{BD}$. A point $X$ is given on the line $AC$ so that $|AX| = |BC|$, where $A$ is between $X$ and $C$. The line $XP$ intersects the side $\overline{BC}$ at point $E$. The line $DE$ intersects the line $AP$ at point $Y$. Prove that the points $A$, $X$, $Y$, $E$ lie on one circle if and only if $|AB| = |BC|$.

2023 Estonia Team Selection Test, 6

Tags: geometry
Let $ABC$ be an acute-angled triangle with $AC > AB$, let $O$ be its circumcentre, and let $D$ be a point on the segment $BC$. The line through $D$ perpendicular to $BC$ intersects the lines $AO, AC,$ and $AB$ at $W, X,$ and $Y,$ respectively. The circumcircles of triangles $AXY$ and $ABC$ intersect again at $Z \ne A$. Prove that if $W \ne D$ and $OW = OD,$ then $DZ$ is tangent to the circle $AXY.$

2013 ELMO Shortlist, 10

Let $AB=AC$ in $\triangle ABC$, and let $D$ be a point on segment $AB$. The tangent at $D$ to the circumcircle $\omega$ of $BCD$ hits $AC$ at $E$. The other tangent from $E$ to $\omega$ touches it at $F$, and $G=BF \cap CD$, $H=AG \cap BC$. Prove that $BH=2HC$. [i]Proposed by David Stoner[/i]

2018 Taiwan TST Round 1, 2

In a plane, we are given $ 100 $ circles with radius $ 1 $ so that the area of any triangle whose vertices are circumcenters of those circles is at most $ 100 $. Prove that one may find a line that intersects at least $ 10 $ circles.

2016 Japan Mathematical Olympiad Preliminary, 3

Tags: angle , geometry
A hexagon $ABCDEF$ is inscribed in a circle. Let $P, Q, R, S$ be intersections of $AB$ and $DC$, $BC$ and $ED$, $CD$ and $FE$, $DE$ and $AF$, then $\angle BPC=50^{\circ}$, $\angle CQD=45^{\circ}$, $\angle DRE=40^{\circ}$, $\angle ESF=35^{\circ}$. Let $T$ be an intersection of $BE$ and $CF$. Find $\angle BTC$.

2018 Switzerland - Final Round, 9

Let $n$ be a positive integer and let $G$ be the set of points $(x, y)$ in the plane such that $x$ and $y$ are integers with $1 \leq x, y \leq n$. A subset of $G$ is called [i]parallelogram-free[/i] if it does not contains four non-collinear points, which are the vertices of a parallelogram. What is the largest number of elements a parallelogram-free subset of $G$ can have?

1999 ITAMO, 1

A rectangular sheet with sides $a$ and $b$ is fold along a diagonal. Compute the area of the overlapping triangle.

BIMO 2022, 1

Tags: geometry
A pentagon $ABCDE$ is such that $ABCD$ is cyclic, $BE\parallel CD$, and $DB=DE$. Let us fix the points $B,C,D,E$ and vary $A$ on the circumcircle of $BCD$. Let $P=AC\cap BE$, and $Q=BC\cap DE$. Prove that the second intersection of circles $(ABE)$ and $(PQE)$ lie on a fixed circle.

2018 PUMaC Geometry B, 7

Let $\triangle BC$ be a triangle with side lengths $AB = 9, BC = 10, CA = 11$. Let $O$ be the circumcenter of $\triangle ABC$. Denote $D = AO \cap BC, E = BO \cap CA, F = CO \cap AB$. If $\frac{1}{AD} + \frac{1}{BE} + \frac{1}{FC}$ can be written in simplest form as $\frac{a \sqrt{b}}{c}$, find $a + b + c$.

2010 Sharygin Geometry Olympiad, 4

Projections of two points to the sidelines of a quadrilateral lie on two concentric circles (projections of each point form a cyclic quadrilateral and the radii of circles are different). Prove that this quadrilateral is a parallelogram.

MMATHS Mathathon Rounds, 2020

[u]Round 1[/u] [b]p1.[/b] Let $n$ be a two-digit positive integer. What is the maximum possible sum of the prime factors of $n^2 - 25$ ? [b]p2.[/b] Angela has ten numbers $a_1, a_2, a_3, ... , a_{10}$. She wants them to be a permutation of the numbers $\{1, 2, 3, ... , 10\}$ such that for each $1 \le i \le 5$, $a_i \le 2i$, and for each $6 \le i \le 10$, $a_i \le - 10$. How many ways can Angela choose $a_1$ through $a_{10}$? [b]p3.[/b] Find the number of three-by-three grids such that $\bullet$ the sum of the entries in each row, column, and diagonal passing through the center square is the same, and $\bullet$ the entries in the nine squares are the integers between $1$ and $9$ inclusive, each integer appearing in exactly one square. [u]Round 2 [/u] [b]p4.[/b] Suppose that $P(x)$ is a quadratic polynomial such that the sum and product of its two roots are equal to each other. There is a real number $a$ that $P(1)$ can never be equal to. Find $a$. [b]p5.[/b] Find the number of ordered pairs $(x, y)$ of positive integers such that $\frac{1}{x} +\frac{1}{y} =\frac{1}{k}$ and k is a factor of $60$. [b]p6.[/b] Let $ABC$ be a triangle with $AB = 5$, $AC = 4$, and $BC = 3$. With $B = B_0$ and $C = C_0$, define the infinite sequences of points $\{B_i\}$ and $\{C_i\}$ as follows: for all $i \ge 1$, let $B_i$ be the foot of the perpendicular from $C_{i-1}$ to $AB$, and let $C_i$ be the foot of the perpendicular from $B_i$ to $AC$. Find $C_0C_1(AC_0 + AC_1 + AC_2 + AC_3 + ...)$. [u]Round 3 [/u] [b]p7.[/b] If $\ell_1, \ell_2, ... ,\ell_{10}$ are distinct lines in the plane and $p_1, ... , p_{100}$ are distinct points in the plane, then what is the maximum possible number of ordered pairs $(\ell_i, p_j )$ such that $p_j$ lies on $\ell_i$? [b]p8.[/b] Before Andres goes to school each day, he has to put on a shirt, a jacket, pants, socks, and shoes. He can put these clothes on in any order obeying the following restrictions: socks come before shoes, and the shirt comes before the jacket. How many distinct orders are there for Andres to put his clothes on? [b]p9. [/b]There are ten towns, numbered $1$ through $10$, and each pair of towns is connected by a road. Define a backwards move to be taking a road from some town $a$ to another town $b$ such that $a > b$, and define a forwards move to be taking a road from some town $a$ to another town $b$ such that $a < b$. How many distinct paths can Ali take from town $1$ to town $10$ under the conditions that $\bullet$ she takes exactly one backwards move and the rest of her moves are forward moves, and $\bullet$ the only time she visits town $10$ is at the very end? One possible path is $1 \to 3 \to 8 \to 6 \to 7 \to 8 \to 10$. [u]Round 4[/u] [b]p10.[/b] How many prime numbers $p$ less than $100$ have the properties that $p^5 - 1$ is divisible by $6$ and $p^6 - 1$ is divisible by $5$? [b]p11.[/b] Call a four-digit integer $\overline{d_1d_2d_3d_4}$ [i]primed [/i] if 1) $d_1$, $d_2$, $d_3$, and $d_4$ are all prime numbers, and 2) the two-digit numbers $\overline{d_1d_2}$ and $\overline{d_3d_4}$ are both prime numbers. Find the sum of all primed integers. [b]p12.[/b] Suppose that $ABC$ is an isosceles triangle with $AB = AC$, and suppose that $D$ and $E$ lie on $\overline{AB}$ and $\overline{AC}$, respectively, with $\overline{DE} \parallel \overline{BC}$. Let $r$ be the length of the inradius of triangle $ADE$. Suppose that it is possible to construct two circles of radius $r$, each tangent to one another and internally tangent to three sides of the trapezoid $BDEC$. If $\frac{BC}{r} = a + \sqrt{b}$ forpositive integers $a$ and $b$ with $b$ squarefree, then find $a + b$. PS. You should use hide for answers. Rounds 5-7 have been posted [url=https://artofproblemsolving.com/community/c4h2800986p24675177]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1996 Romania National Olympiad, 3

Let $N, P$ be the centers of the faces A$BB'A'$ and $ADD'A'$, respectively, of a right parallelepiped $ABCDA'B'C'D'$ and $M \in (A'C)$ such that $A'M= \frac13 A' C$. Prove that $MN \perp AB'$ and $ MP \perp AD' $ if and only if the parallelepiped is a cube.

2003 National High School Mathematics League, 14

$A,B,C$ are points that three complex numbers $z_0=a\text{i},z_1=\frac{1}{2}+b\text{i},z_2=1+c\text{i}(a,b,c\in\mathbb{R})$ refer to on complex plane (not collinear). Prove that curve $Z=Z_0\cos^4t+2Z_1\cos^2t\sin^2t+Z_2\sin^4t(t\in\mathbb{R})$ has only one common point with the perpendicular bisector of $AC$, and find the point.

2009 Jozsef Wildt International Math Competition, W. 29

Prove that for all triangle $\triangle ABC$ holds the following inequality $$\sum \limits_{cyc} \left (1-\sqrt{\sqrt{3}\tan \frac{A}{2}}+\sqrt{3}\tan \frac{A}{2}\right )\left (1-\sqrt{\sqrt{3}\tan \frac{B}{2}}+\sqrt{3}\tan \frac{B}{2}\right )\geq 3$$