This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

1997 Portugal MO, 2

Consider the cube $ABCDEFGH$ and denote by, respectively, $M$ and $N$ the midpoints of $[AB]$ and $[CD]$. Let $P$ be a point on the line defined by $[AE]$ and $Q$ the point of intersection of the lines defined by $[PM]$ and $[BF]$. Prove that the triangle $[PQN]$ is isosceles. [img]https://cdn.artofproblemsolving.com/attachments/0/0/57559efbad87903d087c738df279b055b4aefd.png[/img]

2015 AMC 10, 25

Tags: geometry
A rectangular box measures $a \times b \times c$, where $a,$ $b,$ and $c$ are integers and $1 \leq a \leq b \leq c$. The volume and surface area of the box are numerically equal. How many ordered triples $(a,b,c)$ are possible? $ \textbf{(A) }4\qquad\textbf{(B) }10\qquad\textbf{(C) }12\qquad\textbf{(D) }21\qquad\textbf{(E) }26 $

1988 IMO Shortlist, 30

A point $ M$ is chosen on the side $ AC$ of the triangle $ ABC$ in such a way that the radii of the circles inscribed in the triangles $ ABM$ and $ BMC$ are equal. Prove that \[ BM^{2} \equal{} X \cot \left( \frac {B}{2}\right) \] where X is the area of triangle $ ABC.$

2008 Sharygin Geometry Olympiad, 2

(F.Nilov) Given right triangle $ ABC$ with hypothenuse $ AC$ and $ \angle A \equal{} 50^{\circ}$. Points $ K$ and $ L$ on the cathetus $ BC$ are such that $ \angle KAC \equal{} \angle LAB \equal{} 10^{\circ}$. Determine the ratio $ CK/LB$.

2011 Romania Team Selection Test, 1

Let $ABCD$ be a cyclic quadrilateral which is not a trapezoid and whose diagonals meet at $E$. The midpoints of $AB$ and $CD$ are $F$ and $G$ respectively, and $\ell$ is the line through $G$ parallel to $AB$. The feet of the perpendiculars from E onto the lines $\ell$ and $CD$ are $H$ and $K$, respectively. Prove that the lines $EF$ and $HK$ are perpendicular.

2016 Oral Moscow Geometry Olympiad, 6

Given an acute triangle $ABC$. Let $A'$ be a point symmetric to $A$ with respect to $BC, O_A$ is the center of the circle passing through $A$ and the midpoints of the segments $A'B$ and $A'C. O_B$ and $O_C$ points are defined similarly. Find the ratio of the radii of the circles circumscribed around the triangles $ABC$ and $O_AO_BO_C$.

ABMC Speed Rounds, 2021

[i]25 problems for 30 minutes[/i] [b]p1.[/b] You and nine friends spend $4000$ dollars on tickets to attend the new Harry Styles concert. Unfortunately, six friends cancel last minute due to the u. You and your remaining friends still attend the concert and split the original cost of $4000$ dollars equally. What percent of the total cost does each remaining individual have to pay? [b]p2.[/b] Find the number distinct $4$ digit numbers that can be formed by arranging the digits of $2021$. [b]p3.[/b] On a plane, Darnay draws a triangle and a rectangle such that each side of the triangle intersects each side of the rectangle at no more than one point. What is the largest possible number of points of intersection of the two shapes? [b]p4.[/b] Joy is thinking of a two-digit number. Her hint is that her number is the sum of two $2$-digit perfect squares $x_1$ and $x_2$ such that exactly one of $x_i - 1$ and $x_i + 1$ is prime for each $i = 1, 2$. What is Joy's number? [b]p5.[/b] At the North Pole, ice tends to grow in parallelogram structures of area $60$. On the other hand, at the South Pole, ice grows in right triangular structures, in which each triangular and parallelogram structure have the same area. If every ice triangle $ABC$ has legs $\overline{AB}$ and $\overline{AC}$ that are integer lengths, how many distinct possible lengths are there for the hypotenuse $\overline{BC}$? [b]p6.[/b] Carlsen has some squares and equilateral triangles, all of side length $1$. When he adds up the interior angles of all shapes, he gets $1800^o$. When he adds up the perimeters of all shapes, he gets $24$. How many squares does he have? [b]p7.[/b] Vijay wants to hide his gold bars by melting and mixing them into a water bottle. He adds $100$ grams of liquid gold to $100$ grams of water. His liquefied gold bars have a density of $20$ g/ml and water has a density of $1$ g/ml. Given that the density of the mixture in g/mL can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$, compute the sum $m + n$. (Note: density is mass divided by volume, gram (g) is unit of mass and ml is unit of volume. Further, assume the volume of the mixture is the sum of the volumes of the components.) [b]p8.[/b] Julius Caesar has epilepsy. Specifically, if he sees $3$ or more flashes of light within a $0.1$ second time frame, he will have a seizure. His enemy Brutus has imprisoned him in a room with $4$ screens, which flash exactly every $4$, $5$, $6$, and $7$ seconds, respectively. The screens all flash at once, and $105$ seconds later, Caesar opens his eyes. How many seconds after he opened his eyes will Caesar first get a seizure? [b]p9.[/b] Angela has a large collection of glass statues. One day, she was bored and decided to use some of her statues to create an entirely new one. She melted a sphere with radius $12$ and a cone with height of 18 and base radius of $2$. If Angela wishes to create a new cone with a base radius $2$, what would the the height of the newly created cone be? [b]p10.[/b] Find the smallest positive integer $N$ satisfying these properties: (a) No perfect square besides $1$ divides $N$. (b) $N$ has exactly $16$ positive integer factors. [b]p11.[/b] The probability of a basketball player making a free throw is $\frac15$. The probability that she gets exactly $2$ out of $4$ free throws in her next game can be expressed as $\frac{m}{n}$ for relatively prime positive integers m and n. Find $m + n$. [b]p12.[/b] A new donut shop has $1000$ boxes of donuts and $1000$ customers arriving. The boxes are numbered $1$ to $1000$. Initially, all boxes are lined up by increasing numbering and closed. On the first day of opening, the first customer enters the shop and opens all the boxes for taste testing. On the second day of opening, the second customer enters and closes every box with an even number. The third customer then "reverses" (if closed, they open it and if open, they close it) every box numbered with a multiple of three, and so on, until all $1000$ customers get kicked out for having entered the shop and reversing their set of boxes. What is the number on the sixth box that is left open? [b]p13.[/b] For an assignment in his math class, Michael must stare at an analog clock for a period of $7$ hours. He must record the times at which the minute hand and hour hand form an angle of exactly $90^o$, and he will receive $1$ point for every time he records correctly. What is the maximum number of points Michael can earn on his assignment? [b]p14.[/b] The graphs of $y = x^3 +5x^2 +4x-3$ and $y = -\frac15 x+1$ intersect at three points in the Cartesian plane. Find the sum of the $y$-coordinates of these three points. [b]p15.[/b] In the quarterfinals of a single elimination countdown competition, the $8$ competitors are all of equal skill. When any $2$ of them compete, there is exactly a $50\%$ chance of either one winning. If the initial bracket is randomized, the probability that two of the competitors, Daniel and Anish, face off in one of the rounds can be expressed as $\frac{p}{q}$ for relatively prime positive integers $p$, $q$. Find $p + q$. [b]p16.[/b] How many positive integers less than or equal to $1000$ are not divisible by any of the numbers $2$, $3$, $5$ and $11$? [b]p17.[/b] A strictly increasing geometric sequence of positive integers $a_1, a_2, a_3,...$ satisfies the following properties: (a) Each term leaves a common remainder when divided by $7$ (b) The first term is an integer from $1$ to $6$ (c) The common ratio is an perfect square Let $N$ be the smallest possible value of $\frac{a_{2021}}{a_1}$. Find the remainder when $N$ is divided by $100$. [b]p18.[/b] Suppose $p(x) = x^3 - 11x^2 + 36x - 36$ has roots $r, s,t$. Find %\frac{r^2 + s^2}{t}+\frac{s^2 + t^2}{r}+\frac{t^2 + r^2}{s}%. [b]p19.[/b] Let $a, b \le 2021$ be positive integers. Given that $ab^2$ and $a^2b$ are both perfect squares, let $G = gcd(a, b)$. Find the sum of all possible values of $G$. [b]p20.[/b] Jessica rolls six fair standard six-sided dice at the same time. Given that she rolled at least four $2$'s and exactly one $3$, the probability that all six dice display prime numbers can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m$, $n$. What is $m + n$? [b]p21.[/b] Let $a, b, c$ be numbers such $a + b + c$ is real and the following equations hold: $$a^3 + b^3 + c^3 = 25$$ $$\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}= 1$$ $$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{25}{9}$$ The value of $a + b + c$ can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m$, $n$. Find $m + n$. [b]p22.[/b] Let $\omega$ be a circle and $P$ be a point outside $\omega$. Let line $\ell$ pass through $P$ and intersect $\omega$ at points $A,B$ and with $PA < PB$ and let $m$ be another line passing through $P$ intersecting $\omega$ at points $C,D$ with $PC < PD$. Let X be the intersection of $AD$ and $BC$. Given that $\frac{PC}{CD}=\frac23$, $\frac{PC}{PA}=\frac45$, and $\frac{[ABC]}{[ACD]}=\frac79$,the value of $\frac{[BXD]}{[BXA]}$ can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m, n$: Find $m + n$. [b]p23.[/b] Define the operation $a \circ b =\frac{a^2 + 2ab + a - 12}{b}$. Given that $1 \circ (2 \circ (3 \circ (... 2019 \circ (2020 \circ 2021)))...)$ can be expressed as $-\frac{a}{b}$ for some relatively prime positive integers $a,b$, compute $a + b$. [b]p24.[/b] Find the largest integer $n \le 2021$ for which $5^{n-3} | (n!)^4$ [b]p25.[/b] On the Cartesian plane, a line $\ell$ intersects a parabola with a vertical axis of symmetry at $(0, 5)$ and $(4, 4)$. The focus $F$ of the parabola lies below $\ell$, and the distance from $F$ to $\ell$ is $\frac{16}{\sqrt{17}}$. Let the vertex of the parabola be $(x, y)$. The sum of all possible values of $y$ can be expressed as $\frac{p}{q}$ for relatively prime positive integers $p, q$. Find $p + q$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2023 Stanford Mathematics Tournament, 8

In acute triangle $\triangle ABC$, point $R$ lies on the perpendicular bisector of $AC$ such that $\overline{CA}$ bisects $\angle BAR$. Let $Q$ be the intersection of lines $AC$ and $BR$. The circumcircle of $\triangle ARC$ intersects segment $\overline{AB}$ at $P\neq A$, with $AP=1$, $PB=5$, and $AQ=2$. Compute $AR$.

2017 Sharygin Geometry Olympiad, 2

Let $H$ and $O$ be the orthocenter and circumcenter of an acute-angled triangle $ABC$, respectively. The perpendicular bisector of $BH$ meets $AB$ and $BC$ at points $A_1$ and $C_1$, respectively. Prove that $OB$ bisects the angle $A_1OC_1$.

2022 Iranian Geometry Olympiad, 1

Tags: marvio , geometry
Four points $A$, $B$, $C$ and $D$ lie on a circle $\omega$ such that $AB=BC=CD$. The tangent line to $\omega$ at point $C$ intersects the tangent line to $\omega$ at $A$ and the line $AD$ at $K$ and $L$. The circle $\omega$ and the circumcircle of triangle $KLA$ intersect again at $M$. Prove that $MA=ML$. [i]Proposed by Mahdi Etesamifard[/i]

2006 China Team Selection Test, 3

$d$ and $n$ are positive integers such that $d \mid n$. The n-number sets $(x_1, x_2, \cdots x_n)$ satisfy the following condition: (1) $0 \leq x_1 \leq x_2 \leq \cdots \leq x_n \leq n$ (2) $d \mid (x_1+x_2+ \cdots x_n)$ Prove that in all the n-number sets that meet the conditions, there are exactly half satisfy $x_n=n$.

2003 Irish Math Olympiad, 2

Tags: geometry
$P$, $Q$, $R$ and $S$ are (distinct) points on a circle. $PS$ is a diameter and $QR$ is parallel to the diameter $PS$. $PR$ and $QS$ meet at $A$. Let $O$ be the centre of the circle and let $B$ be chosen so that the quadrilateral $POAB$ is a parallelogram. Prove that $BQ$ = $BP$ .

2003 Silk Road, 2

Let $s=\frac{AB+BC+AC}{2}$ be half-perimeter of triangle $ABC$. Let $L$ and $N$be a point's on ray's $AB$ and $CB$, for which $AL=CN=s$. Let $K$ is point, symmetric of point $B$ by circumcenter of $ABC$. Prove, that perpendicular from $K$ to $NL$ passes through incenter of $ABC$. Solution for problem [url=http://www.artofproblemsolving.com/Forum/viewtopic.php?f=125&t=365714&p=2011659#p2011659]here[/url]

2010 Sharygin Geometry Olympiad, 8

Triangle $ABC$ is inscribed into circle $k$. Points $A_1,B_1, C_1$ on its sides were marked, after this the triangle was erased. Prove that it can be restored uniquely if and only if $AA_1, BB_1$ and $CC_1$ concur.

2025 China Team Selection Test, 8

Tags: geometry
Let quadrilateral $A_1A_2A_3A_4$ be not cyclic and haves edges not parallel to each other. Denote $B_i$ as the intersection of the tangent line at $A_i$ with respect to circle $A_{i-1}A_iA_{i+1}$ and the $A_{i+2}$-symmedian with respect to triangle $A_{i+1}A_{i+2}A_{i+3}$ and $C_i$ as the intersection of lines $A_iA_{i+1}$ and $B_iB_{i+1}$, where all indexes taken cyclically. Prove that $C_1$, $C_2$, $C_3$, and $C_4$ are collinear.

2023 IRN-SGP-TWN Friendly Math Competition, 2

Let $f: \mathbb{R}^{2} \to \mathbb{R}^{+}$such that for every rectangle $A B C D$ one has $$ f(A)+f(C)=f(B)+f(D). $$ Let $K L M N$ be a quadrangle in the plane such that $f(K)+f(M)=f(L)+f(N)$, for each such function. Prove that $K L M N$ is a rectangle. [i]Proposed by Navid.[/i]

2018 Oral Moscow Geometry Olympiad, 1

Two parallelograms are arranged so as it shown on the picture. Prove that the diagonal of the one parallelogram passes through the intersection point of the diagonals of the second. [img]https://cdn.artofproblemsolving.com/attachments/9/a/15c2f33ee70eec1bcc44f94ec0e809c9e837ff.png[/img]

2004 CHKMO, 3

Let $K, L, M, N$ be the midpoints of sides $AB, BC, CD, DA$ of a cyclic quadrilateral $ABCD$. Prove that the orthocentres of triangles $ANK, BKL, CLM, DMN$ are the vertices of a parallelogram.

JBMO Geometry Collection, 2004

Let $ABC$ be an isosceles triangle with $AC=BC$, let $M$ be the midpoint of its side $AC$, and let $Z$ be the line through $C$ perpendicular to $AB$. The circle through the points $B$, $C$, and $M$ intersects the line $Z$ at the points $C$ and $Q$. Find the radius of the circumcircle of the triangle $ABC$ in terms of $m = CQ$.

2023 ISL, G7

Tags: geometry
Let $ABC$ be an acute, scalene triangle with orthocentre $H$. Let $\ell_a$ be the line through the reflection of $B$ with respect to $CH$ and the reflection of $C$ with respect to $BH$. Lines $\ell_b$ and $\ell_c$ are defined similarly. Suppose lines $\ell_a$, $\ell_b$, and $\ell_c$ determine a triangle $\mathcal T$. Prove that the orthocentre of $\mathcal T$, the circumcentre of $\mathcal T$, and $H$ are collinear. [i]Fedir Yudin, Ukraine[/i]

2024 Simon Marais Mathematical Competition, B3

Tags: geometry
Let $\mathcal{L}$ be the set of all lines in the plane and let $\mathcal{P}$ be the set of all points in the plane. Determine whether there exists a function $g : \mathcal{L} \to \mathcal{P}$ such that for any two distinct non-parallel lines $\ell_1, \ell_2 \in \mathcal{L}$, we have $(a)$ $g(\ell_1) \neq g(\ell_2)$, and $(b)$ if $\ell_3$ is the line passing through $g(\ell_1)$ and $g(\ell_2)$, then $g(\ell_3)$ is the intersection of $\ell_1$ and $\ell_2$.

2010 Contests, 3

Consider a triangle $XYZ$ and a point $O$ in its interior. Three lines through $O$ are drawn, parallel to the respective sides of the triangle. The intersections with the sides of the triangle determine six line segments from $O$ to the sides of the triangle. The lengths of these segments are integer numbers $a, b, c, d, e$ and $f$ (see figure). Prove that the product $a \cdot b \cdot c\cdot d \cdot e \cdot f$ is a perfect square. [asy] unitsize(1 cm); pair A, B, C, D, E, F, O, X, Y, Z; X = (1,4); Y = (0,0); Z = (5,1.5); O = (1.8,2.2); A = extension(O, O + Z - X, X, Y); B = extension(O, O + Y - Z, X, Y); C = extension(O, O + X - Y, Y, Z); D = extension(O, O + Z - X, Y, Z); E = extension(O, O + Y - Z, Z, X); F = extension(O, O + X - Y, Z, X); draw(X--Y--Z--cycle); draw(A--D); draw(B--E); draw(C--F); dot("$A$", A, NW); dot("$B$", B, NW); dot("$C$", C, SE); dot("$D$", D, SE); dot("$E$", E, NE); dot("$F$", F, NE); dot("$O$", O, S); dot("$X$", X, N); dot("$Y$", Y, SW); dot("$Z$", Z, dir(0)); label("$a$", (A + O)/2, SW); label("$b$", (B + O)/2, SE); label("$c$", (C + O)/2, SE); label("$d$", (D + O)/2, SW); label("$e$", (E + O)/2, SE); label("$f$", (F + O)/2, NW); [/asy]

2024 Bosnia and Herzegovina Junior BMO TST, 3.

Let $ABC$ be a right-angled triangle where ∠$ACB$=90°.Let $CD$ be an altitude of that triangle and points $M$ and $N$ be the midpoints of $CD$ and $BC$, respectively.If $S$ is the circumcenter of the triangle $AMN$, prove that $AS$ and $BC$ are paralel.

2024 India IMOTC, 14

Tags: geometry
Let $ABCD$ be a convex cyclic quadrilateral with circumcircle $\omega$. Let $BA$ produced beyond $A$ meet $CD$ produced beyond $D$, at $L$. Let $\ell$ be a line through $L$ meeting $AD$ and $BC$ at $M$ and $N$ respectively, so that $M,D$ (respectively $N,C$) are on opposite sides of $A$ (resp. $B$). Suppose $K$ and $J$ are points on the arc $AB$ of $\omega$ not containing $C,D$ so that $MK, NJ$ are tangent to $\omega$. Prove that $K,J,L$ are collinear. [i]Proposed by Rijul Saini[/i]

2020 Korean MO winter camp, #4

Tags: geometry
$I$ is the incenter of a given triangle $\triangle ABC$. The angle bisectors of $ABC$ meet the sides at $D,E,F$, and $EF$ meets $(ABC)$ at $L$ and $T$ ($F$ is on segment $LE$.). Suppose $M$ is the midpoint of $BC$. Prove that if $DT$ is tangent to the incircle of $ABC$, then $IL$ bisects $\angle MLT$.