Found problems: 25757
2008 AMC 12/AHSME, 17
Let $ A$, $ B$, and $ C$ be three distinct points on the graph of $ y\equal{}x^2$ such that line $ AB$ is parallel to the $ x$-axis and $ \triangle{ABC}$ is a right triangle with area $ 2008$. What is the sum of the digits of the $ y$-coordinate of $ C$?
$ \textbf{(A)}\ 16 \qquad
\textbf{(B)}\ 17 \qquad
\textbf{(C)}\ 18 \qquad
\textbf{(D)}\ 19 \qquad
\textbf{(E)}\ 20$
2022 Paraguay Mathematical Olympiad, 2
Santiago, Daniel and Fátima practice for the Math Olympics. Santiago thinks of a regular polygon and Daniel of another, without telling Fatima what the polygons are. They just tell you that one of the polygons has $3$ more sides than the other and that an angle of one of the polygons measures $10$ degrees more than one angle of the other.
From this, and knowing that each interior angle of a regular polygon of $n$ sides measures $\frac{180(n-2)}{n}$ degrees, Fatima identifies what the polygons are. How many sides do the polygons that James and Daniel chose, have?
1988 AMC 12/AHSME, 20
In one of the adjoining figures a square of side $2$ is dissected into four pieces so that $E$ and $F$ are the midpoints of opposite sides and $AG$ is perpendicular to $BF$. These four pieces can then be reassembled into a rectangle as shown in the second figure. The ratio of height to base, $XY$ / $YZ$, in this rectangle is
[asy]
size(180);
defaultpen(linewidth(0.7)+fontsize(10));
pair A=(0,1), B=(0,-1), C=(2,-1), D=(2,1), E=(1,-1), F=(1,1), G=(.8,.6);
pair X=(4,sqrt(5)), Y=(4,-sqrt(5)), Z=(4+2/sqrt(5),-sqrt(5)), W=(4+2/sqrt(5),sqrt(5)), T=(4,0), U=(4+2/sqrt(5),-4/sqrt(5)), V=(4+2/sqrt(5),1/sqrt(5));
draw(A--B--C--D--A^^B--F^^E--D^^A--G^^rightanglemark(A,G,F));
draw(X--Y--Z--W--X^^T--V--X^^Y--U);
label("A", A, NW);
label("B", B, SW);
label("C", C, SE);
label("D", D, NE);
label("E", E, S);
label("F", F, N);
label("G", G, E);
label("X", X, NW);
label("Y", Y, SW);
label("Z", Z, SE);
label("W", W, NE);
[/asy]
$ \textbf{(A)}\ 4\qquad\textbf{(B)}\ 1+2\sqrt{3}\qquad\textbf{(C)}\ 2\sqrt{5}\qquad\textbf{(D)}\ \frac{8+4\sqrt{3}}{3}\qquad\textbf{(E)}\ 5 $
2023 Kazakhstan National Olympiad, 6
Inside an equilateral triangle with side $3$ there are two rhombuses with sides $1,061$ and acute angles $60^\circ$. Prove that these two rhombuses intersect each other. (The vertices of the rhombus are strictly inside the triangle.)
2024 Junior Macedonian Mathematical Olympiad, 3
The angle bisector of $\angle BAC$ intersects the circumcircle of the acute-angled $\triangle ABC$ at point $D$. Let the perpendicular bisectors of $CD$ and $AD$ intersect sides $BC$ and $AB$ at points $E$ and $F$, respectively. If $O$ is the circumcenter of $\triangle ABC$, prove that the points $F, D, E$, and $O$ are concyclic.
[i]Proposed by Petar Filipovski[/i]
Kyiv City MO 1984-93 - geometry, 1990.11.3
The side $AC$ of triangle $ABC$ is extended at segment $CD = AB = 1$. It is known that $\angle ABC = 90^o$, $\angle CBD = 30^o$. Calculate $AC$.
2006 Switzerland Team Selection Test, 1
In the triangle $A,B,C$, let $D$ be the middle of $BC$ and $E$ the projection of $C$ on $AD$. Suppose $\angle ACE = \angle ABC$. Show that the triangle $ABC$ is isosceles or rectangle.
2005 IberoAmerican, 2
A flea jumps in a straight numbered line. It jumps first from point $0$ to point $1$. Afterwards, if its last jump was from $A$ to $B$, then the next jump is from $B$ to one of the points $B + (B - A) - 1$, $B + (B - A)$, $B + (B-A) + 1$.
Prove that if the flea arrived twice at the point $n$, $n$ positive integer, then it performed at least $\lceil 2\sqrt n\rceil$ jumps.
2006 Moldova Team Selection Test, 3
Let $a,b,c$ be sides of a triangle and $p$ its semiperimeter. Show that
$a\sqrt{\frac{(p-b)(p-c)}{bc}}+b \sqrt{\frac{(p-c)(p-a)}{ac}}+c\sqrt{\frac{(p-a)(p-b)}{ab}}\geq p$
2021 Sharygin Geometry Olympiad, 23
Six points in general position are given in the space. For each two of them color red the common points (if they exist) of the segment between these points and the surface of the tetrahedron formed by four remaining points. Prove that the number of red points is even.
2018 Stars of Mathematics, 4
Given an integer $n \ge 3$, prove that the diameter of a convex $n$-gon (interior and boundary) containing a disc of radius $r$ is (strictly) greater than $r(1 + 1/ \cos( \pi /n))$.
The Editors
1986 IMO Longlists, 50
Let $D$ be the point on the side $BC$ of the triangle $ABC$ such that $AD$ is the bisector of $\angle CAB$. Let $I$ be the incenter of$ ABC.$
[i](a)[/i] Construct the points $P$ and $Q$ on the sides $AB$ and $AC$, respectively, such that $PQ$ is parallel to $BC$ and the perimeter of the triangle $APQ$ is equal to $k \cdot BC$, where $k$ is a given rational number.
[i](b) [/i]Let $R$ be the intersection point of $PQ$ and $AD$. For what value of $k$ does the equality $AR = RI$ hold?
[i](c)[/i] In which case do the equalities $AR = RI = ID$ hold?
1965 All Russian Mathematical Olympiad, 058
A circle is circumscribed around the triangle $ABC$. Chords, from the midpoint of the arc $AC$ to the midpoints of the arcs $AB$ and $BC$, intersect sides $[AB]$ and $[BC]$ in the points $D$ and $E$. Prove that $(DE)$ is parallel to $(AC)$ and passes through the centre of the inscribed circle.
2016 Peru Cono Sur TST, P6
Two circles $\omega_1$ and $\omega_2$, which have centers $O_1$ and $O_2$, respectively, intersect at $A$ and $B$. A line $\ell$ that passes through $B$ cuts to $\omega_1$ again at $C$ and cuts to $\omega_2$ again in $D$, so that points $C, B, D$ appear in that order. The tangents of $\omega_1$ and $\omega_2$ in $C$ and $D$, respectively, intersect in $E$. Line $AE$ intersects again to the circumscribed circumference of the triangle $AO_1O_2$ in $F$. Try that the length of the $EF$ segment is constant, that is, it does not depend on the choice of $\ell$.
TNO 2023 Junior, 1
In the convex quadrilateral $ABCD$, it is given that $\angle BAD = \angle DCB = 90^\circ$, $AB = 7$, $CD = 11$, and that $BC$ and $AD$ are integers greater than 11. Determine the values of $BC$ and $AD$.
2020 AMC 10, 21
In square $ABCD$, points $E$ and $H$ lie on $\overline{AB}$ and $\overline{DA}$, respectively, so that $AE=AH.$ Points $F$ and $G$ lie on $\overline{BC}$ and $\overline{CD}$, respectively, and points $I$ and $J$ lie on $\overline{EH}$ so that $\overline{FI} \perp \overline{EH}$ and $\overline{GJ} \perp \overline{EH}$. See the figure below. Triangle $AEH$, quadrilateral $BFIE$, quadrilateral $DHJG$, and pentagon $FCGJI$ each has area $1.$ What is $FI^2$?
[asy]
real x=2sqrt(2);
real y=2sqrt(16-8sqrt(2))-4+2sqrt(2);
real z=2sqrt(8-4sqrt(2));
pair A, B, C, D, E, F, G, H, I, J;
A = (0,0);
B = (4,0);
C = (4,4);
D = (0,4);
E = (x,0);
F = (4,y);
G = (y,4);
H = (0,x);
I = F + z * dir(225);
J = G + z * dir(225);
draw(A--B--C--D--A);
draw(H--E);
draw(J--G^^F--I);
draw(rightanglemark(G, J, I), linewidth(.5));
draw(rightanglemark(F, I, E), linewidth(.5));
dot("$A$", A, S);
dot("$B$", B, S);
dot("$C$", C, dir(90));
dot("$D$", D, dir(90));
dot("$E$", E, S);
dot("$F$", F, dir(0));
dot("$G$", G, N);
dot("$H$", H, W);
dot("$I$", I, SW);
dot("$J$", J, SW);
[/asy]
$\textbf{(A) } \frac{7}{3} \qquad \textbf{(B) } 8-4\sqrt2 \qquad \textbf{(C) } 1+\sqrt2 \qquad \textbf{(D) } \frac{7}{4}\sqrt2 \qquad \textbf{(E) } 2\sqrt2$
1998 AMC 12/AHSME, 11
Let R be a rectangle. How many circles in the plane of R have a diameter both of whose endpoints are vertices of R?
$ \textbf{(A)}\ 1\qquad
\textbf{(B)}\ 2\qquad
\textbf{(C)}\ 4\qquad
\textbf{(D)}\ 5\qquad
\textbf{(E)}\ 6$
2019 Thailand TST, 1
Let $n\geqslant 3$ be an integer. Prove that there exists a set $S$ of $2n$ positive integers satisfying the following property: For every $m=2,3,...,n$ the set $S$ can be partitioned into two subsets with equal sums of elements, with one of subsets of cardinality $m$.
2013 NIMO Problems, 3
In triangle $ABC$, $AB=13$, $BC=14$ and $CA=15$. Segment $BC$ is split into $n+1$ congruent segments by $n$ points. Among these points are the feet of the altitude, median, and angle bisector from $A$. Find the smallest possible value of $n$.
[i]Proposed by Evan Chen[/i]
2005 AMC 8, 19
What is the perimeter of trapezoid $ ABCD$?
[asy]defaultpen(linewidth(0.8));size(3inch, 1.5inch);
pair a=(0,0), b=(18,24), c=(68,24), d=(75,0), f=(68,0), e=(18,0);
draw(a--b--c--d--cycle);
draw(b--e);
draw(shift(0,2)*e--shift(2,2)*e--shift(2,0)*e);
label("30", (9,12), W);
label("50", (43,24), N);
label("25", (71.5, 12), E);
label("24", (18, 12), E);
label("$A$", a, SW);
label("$B$", b, N);
label("$C$", c, N);
label("$D$", d, SE);
label("$E$", e, S);[/asy]
$ \textbf{(A)}\ 180\qquad\textbf{(B)}\ 188\qquad\textbf{(C)}\ 196\qquad\textbf{(D)}\ 200\qquad\textbf{(E)}\ 204 $
1997 IMO Shortlist, 8
It is known that $ \angle BAC$ is the smallest angle in the triangle $ ABC$. The points $ B$ and $ C$ divide the circumcircle of the triangle into two arcs. Let $ U$ be an interior point of the arc between $ B$ and $ C$ which does not contain $ A$. The perpendicular bisectors of $ AB$ and $ AC$ meet the line $ AU$ at $ V$ and $ W$, respectively. The lines $ BV$ and $ CW$ meet at $ T$.
Show that $ AU \equal{} TB \plus{} TC$.
[i]Alternative formulation:[/i]
Four different points $ A,B,C,D$ are chosen on a circle $ \Gamma$ such that the triangle $ BCD$ is not right-angled. Prove that:
(a) The perpendicular bisectors of $ AB$ and $ AC$ meet the line $ AD$ at certain points $ W$ and $ V,$ respectively, and that the lines $ CV$ and $ BW$ meet at a certain point $ T.$
(b) The length of one of the line segments $ AD, BT,$ and $ CT$ is the sum of the lengths of the other two.
2009 Sharygin Geometry Olympiad, 6
Let $M, I$ be the centroid and the incenter of triangle $ABC, A_1$ and $B_1$ be the touching points of the incircle with sides $BC$ and $AC, G$ be the common point of lines $AA_1$ and $BB_1$. Prove that angle $\angle CGI$ is right if and only if $GM // AB$.
(A.Zaslavsky)
2018 Czech-Polish-Slovak Match, 4
Let $ABC$ be an acute triangle with the perimeter of $2s$. We are given three pairwise disjoint circles with pairwise disjoint interiors with the centers $A, B$, and $C$, respectively. Prove that there exists a circle with the radius of $s$ which contains all the three circles.
[i]Proposed by Josef Tkadlec, Czechia[/i]
2008 China Team Selection Test, 1
Let $ ABC$ be an acute triangle, let $ M,N$ be the midpoints of minor arcs $ \widehat{CA},\widehat{AB}$ of the circumcircle of triangle $ ABC,$ point $ D$ is the midpoint of segment $ MN,$ point $ G$ lies on minor arc $ \widehat{BC}.$ Denote by $ I,I_{1},I_{2}$ the incenters of triangle $ ABC,ABG,ACG$ respectively.Let $ P$ be the second intersection of the circumcircle of triangle $ GI_{1}I_{2}$ with the circumcircle of triangle $ ABC.$ Prove that three points $ D,I,P$ are collinear.
2017 Argentina National Olympiad, 3
Let $ABC$ be a triangle of perimeter $100$ and $I$ be the point of intersection of its bisectors. Let $M$ be the midpoint of side $BC$. The line parallel to $AB$ drawn by$ I$ cuts the median $AM$ at point $P$ so that $\frac{AP}{PM} =\frac73$. Find the length of side $AB$.