Found problems: 25757
2023 Olimphíada, 2
Let $ABCD$ be a quadrilateral circumscribed around a circle $\omega$ with center $I$. Assume $P$ and $Q$ are distinct points and are isogonal conjugates such that $P, Q$, and $I$ are collinear. Show that $ABCD$ is a kite, that is, it has two disjoint pairs of consecutive equal sides.
2015 Brazil Team Selection Test, 4
Let $ABC$ be a triangle with circumcircle $\Omega$ and incentre $I$. Let the line passing through $I$ and perpendicular to $CI$ intersect the segment $BC$ and the arc $BC$ (not containing $A$) of $\Omega$ at points $U$ and $V$ , respectively. Let the line passing through $U$ and parallel to $AI$ intersect $AV$ at $X$, and let the line passing through $V$ and parallel to $AI$ intersect $AB$ at $Y$ . Let $W$ and $Z$ be the midpoints of $AX$ and $BC$, respectively. Prove that if the points $I, X,$ and $Y$ are collinear, then the points $I, W ,$ and $Z$ are also collinear.
[i]Proposed by David B. Rush, USA[/i]
2020 Peru EGMO TST, 5
Let $AD$ be the diameter of a circle $\omega$ and $BC$ is a chord of $\omega$ which is perpendicular to $AD$. Let $M,N,P$ be points on the segments $AB,AC,BC$ respectively, such that $MP\parallel AC$ and $PN\parallel AB$. The line $MN$ cuts the line $PD$ in the point $Q$ and the angle bisector of $\angle MPN$ in the point $R$. Prove that the points $B,R,Q,C$ are concyclic.
2003 IMO Shortlist, 4
Let $\Gamma_1$, $\Gamma_2$, $\Gamma_3$, $\Gamma_4$ be distinct circles such that $\Gamma_1$, $\Gamma_3$ are externally tangent at $P$, and $\Gamma_2$, $\Gamma_4$ are externally tangent at the same point $P$. Suppose that $\Gamma_1$ and $\Gamma_2$; $\Gamma_2$ and $\Gamma_3$; $\Gamma_3$ and $\Gamma_4$; $\Gamma_4$ and $\Gamma_1$ meet at $A$, $B$, $C$, $D$, respectively, and that all these points are different from $P$. Prove that
\[
\frac{AB\cdot BC}{AD\cdot DC}=\frac{PB^2}{PD^2}.
\]
1967 German National Olympiad, 6
Prove the following theorem:
If there are $n$ pairs of different points $P_i$, $i = 1, 2, ..., n$, $n > 2$ in three dimensions space, such that each of them is at a smaller distance from one and the same point $Q$ than any other $P_i$, then $n < 15$.
2020/2021 Tournament of Towns, P2
There were ten points $X_1, \ldots , X_{10}$ on a line in this particular order. Pete constructed an isosceles triangle on each segment $X_1X_2, X_2X_3,\ldots, X_9X_{10}$ as a base with the angle $\alpha{}$ at its apex. It so happened that all the apexes of those triangles lie on a common semicircle with diameter $X_1X_{10}$. Find $\alpha{}$.
[i]Egor Bakaev[/i]
VII Soros Olympiad 2000 - 01, 9.7
Sides $AB$ and $CD$ of quadrilateral $ABCD$ intersect at point $E$. On the diagonals$ AC$ and $BD$ points $M$ and $N$ are taken, respectively, so that $AM / AC = BN / BD = k$. Find the area of a triangle $EMN$ if the area of $ABCD$ is $S$.
2019 IMAR Test, 1
Consider an acute triangle $ ABC. $ The points $ D,E,F $ are the feet of the altitudes of $ ABC $ from $ A,B,C, $ respectively. $ M,N,P $ are the middlepoints of $ BC,CA,AB, $ respectively. The circumcircles of $ BDP,CDN $ cross at $
X\neq D, $ the circumcircles of $ CEM,AEP $ cross at $ Y\neq E, $ and the circumcircles of $ AFN,BFM $ cross at $ Z\neq F. $ Prove that $ AX,BY,CZ $ are concurrent.
2016 LMT, Team Round
[b]p1.[/b] Let $X,Y ,Z$ be nonzero real numbers such that the quadratic function $X t^2 - Y t + Z = 0$ has the unique root $t = Y$ . Find $X$.
[b]p2.[/b] Let $ABCD$ be a kite with $AB = BC = 1$ and $CD = AD =\sqrt2$. Given that $BD =\sqrt5$, find $AC$.
[b]p3.[/b] Find the number of integers $n$ such that $n -2016$ divides $n^2 -2016$. An integer $a$ divides an integer $b$ if there exists a unique integer $k$ such that $ak = b$.
[b]p4.[/b] The points $A(-16, 256)$ and $B(20, 400)$ lie on the parabola $y = x^2$ . There exists a point $C(a,a^2)$ on the parabola $y = x^2$ such that there exists a point $D$ on the parabola $y = -x^2$ so that $ACBD$ is a parallelogram. Find $a$.
[b]p5.[/b] Figure $F_0$ is a unit square. To create figure $F_1$, divide each side of the square into equal fifths and add two new squares with sidelength $\frac15$ to each side, with one of their sides on one of the sides of the larger square. To create figure $F_{k+1}$ from $F_k$ , repeat this same process for each open side of the smallest squares created in $F_n$. Let $A_n$ be the area of $F_n$. Find $\lim_{n\to \infty} A_n$.
[img]https://cdn.artofproblemsolving.com/attachments/8/9/85b764acba2a548ecc61e9ffc29aacf24b4647.png[/img]
[b]p6.[/b] For a prime $p$, let $S_p$ be the set of nonnegative integers $n$ less than $p$ for which there exists a nonnegative integer $k$ such that $2016^k -n$ is divisible by $p$. Find the sum of all $p$ for which $p$ does not divide the sum of the elements of $S_p$ .
[b]p7. [/b] Trapezoid $ABCD$ has $AB \parallel CD$ and $AD = AB = BC$. Unit circles $\gamma$ and $\omega$ are inscribed in the trapezoid such that circle $\gamma$ is tangent to $CD$, $AB$, and $AD$, and circle $\omega$ is tangent to $CD$, $AB$, and $BC$. If circles $\gamma$ and $\omega$ are externally tangent to each other, find $AB$.
[b]p8.[/b] Let $x, y, z$ be real numbers such that $(x+y)^2+(y+z)^2+(z+x)^2 = 1$. Over all triples $(x, y, z)$, find the maximum possible value of $y -z$.
[b]p9.[/b] Triangle $\vartriangle ABC$ has sidelengths $AB = 13$, $BC = 14$, and $CA = 15$. Let $P$ be a point on segment $BC$ such that $\frac{BP}{CP} = 3$, and let $I_1$ and $I_2$ be the incenters of triangles $\vartriangle ABP$ and $\vartriangle ACP$. Suppose that the circumcircle of $\vartriangle I_1PI_2$ intersects segment $AP$ for a second time at a point $X \ne P$. Find the length of segment $AX$.
[b]p10.[/b] For $1 \le i \le 9$, let Ai be the answer to problem i from this section. Let $(i_1,i_2,... ,i_9)$ be a permutation of $(1, 2,... , 9)$ such that $A_{i_1} < A_{i_2} < ... < A_{i_9}$. For each $i_j$ , put the number $i_j$ in the box which is in the $j$th row from the top and the $j$th column from the left of the $9\times 9$ grid in the bonus section of the answer sheet. Then, fill in the rest
of the squares with digits $1, 2,... , 9$ such that
$\bullet$ each bolded $ 3\times 3$ grid contains exactly one of each digit from $ 1$ to $9$,
$\bullet$ each row of the $9\times 9$ grid contains exactly one of each digit from $ 1$ to $9$, and
$\bullet$ each column of the $9\times 9$ grid contains exactly one of each digit from $ 1$ to $9$.
PS. You had better use hide for answers.
1998 China Team Selection Test, 2
Let $n$ be a natural number greater than 2. $l$ is a line on a plane. There are $n$ distinct points $P_1$, $P_2$, …, $P_n$ on $l$. Let the product of distances between $P_i$ and the other $n-1$ points be $d_i$ ($i = 1, 2,$ …, $n$). There exists a point $Q$, which does not lie on $l$, on the plane. Let the distance from $Q$ to $P_i$ be $C_i$ ($i = 1, 2,$ …, $n$). Find $S_n = \sum_{i = 1}^{n} (-1)^{n-i} \frac{c_i^2}{d_i}$.
2011 All-Russian Olympiad, 3
Let $ABC$ be an equilateral triangle. A point $T$ is chosen on $AC$ and on arcs $AB$ and $BC$ of the circumcircle of $ABC$, $M$ and $N$ are chosen respectively, so that $MT$ is parallel to $BC$ and $NT$ is parallel to $AB$. Segments $AN$ and $MT$ intersect at point $X$, while $CM$ and $NT$ intersect in point $Y$. Prove that the perimeters of the polygons $AXYC$ and $XMBNY$ are the same.
2015 International Zhautykov Olympiad, 1
Each point with integral coordinates in the plane is coloured white or blue. Prove that one can choose a colour so that for every positive integer $ n $ there exists a triangle of area $ n $ having its vertices of the chosen colour.
2012 AMC 10, 23
A solid tetrahedron is sliced off a solid wooden unit cube by a plane passing through two nonadjacent vertices on one face and one vertex on the opposite face not adjacent to either of the first two vertices. The tetrahedron is discarded and the remaining portion of the cube is placed on a table with the cut surface face down. What is the height of this object?
$ \textbf{(A)}\ \dfrac{\sqrt{3}}{3}\qquad\textbf{(B)}\ \dfrac{2\sqrt{2}}{3}\qquad\textbf{(C)}\ 1\qquad\textbf{(D)}\ \dfrac{2\sqrt{3}}{3}\qquad\textbf{(E)}\ \sqrt{2} $
1940 Putnam, A8
A triangle is bounded by the lines $a_1 x+ b_1 y +c_1=0$, $a_2 x+ b_2 y +c_2=0$ and $a_2 x+ b_2 y +c_2=0$.
Show that its area, disregarding sign, is
$$\frac{\Delta^{2}}{2(a_2 b_3- a_3 b_2)(a_3 b_1- a_1 b_3)(a_1 b_2- a_2 b_1)},$$
where $\Delta$ is the discriminant of the matrix
$$M=\begin{pmatrix}
a_1 & b_1 &c_1\\
a_2 & b_2 &c_2\\
a_3 & b_3 &c_3
\end{pmatrix}.$$
1974 Dutch Mathematical Olympiad, 5
For every $n \in N$, is it possible to make a figure consisting of $n+1$ points, where $n$ points lie on one line and one point is not on that line, so that each pair of those points is an integer distance from each other?
2012 IFYM, Sozopol, 4
In the right-angled $\Delta ABC$, with area $S$, a circle with area $S_1$ is inscribed and a circle with area $S_2$ is circumscribed. Prove the following inequality:
$\pi \frac{S-S_1}{S_2} <\frac{1}{\pi-1}$.
2012 IFYM, Sozopol, 8
The lengths of the sides of a convex decagon are no greater than 1. Prove that for each inner point $M$ of the decagon there is at least one vertex $A$, for which $MA\leq \frac{\sqrt{5}+1}{2}$.
2002 China Team Selection Test, 2
$ \odot O_1$ and $ \odot O_2$ meet at points $ P$ and $ Q$. The circle through $ P$, $ O_1$ and $ O_2$ meets $ \odot O_1$ and $ \odot O_2$ at points $ A$ and $ B$. Prove that the distance from $ Q$ to the lines $ PA$, $ PB$ and $ AB$ are equal.
(Prove the following three cases: $ O_1$ and $ O_2$ are in the common space of $ \odot O_1$ and $ \odot O_2$; $ O_1$ and $ O_2$ are out of the common space of $ \odot O_1$ and $ \odot O_2$; $ O_1$ is in the common space of $ \odot O_1$ and $ \odot O_2$, $ O_2$ is out of the common space of $ \odot O_1$ and $ \odot O_2$.
2005 Estonia National Olympiad, 1
Seven brothers bought a round pizza and cut it $12$ piece as shown in the figure. Of the six elder brothers, each took one piece of the shape of an equilateral triangle, the remaining $6$ edge pieces by the older brothers did not want, was given to the youngest brother. Did the youngest brother get it more or less a seal than his every older brother?
[img]https://cdn.artofproblemsolving.com/attachments/0/7/2efaec7dab171b8bb239dc8eb282947a5c44b0.png[/img]
Ukrainian TYM Qualifying - geometry, 2010.3
The following method of approximate measurement is known for distances. Suppose, for example, that the observer is on the river bank at point $C$ in order to measure its width. To do this, he fixes point $A$ on the opposite bank so that the angle between the shoreline and the line $CA$ is close to the line. Then the observer pulls forward the right hand with the raised thumb, closes left eye and aligns the raised finger with point $A$. Next, opens the left eye, closes right and estimates the distance between the point on the opposite bank to which the finger points, and point $A$. Multiply this distance by $10$ and get the approximate value of the distance to point $A$, ie the width of the river. Justify this method of measuring distance.
[hide=original wording]Відомий наступний спосіб наближеного вимірювання відстані. Нехай, наприклад, спостерігач знаходиться на березі річки у точці C і має на меті виміряти її ширину. Для цього він фіксує точку A на протилежному березі так, щоб кут між лінією берега і прямою CA був близьким до прямого. Потім спостерігач витягує вперед праву руку з піднятим вгору великим пальцем, заплющує ліве око і суміщає піднятий палець з точкою A. Далі, відкриває ліве око, заплющує праве і оцінює відстань між точкою на протилежному березі, на яку вказує палець, і точкою A. Цю відстань множить на 10 і отримує наближене значення відстані до точки A, тобто ширини річки. Обґрунтуйте цей спосіб вимірювання відстані.[/hide]
2011 JHMT, 5
Let $ABCD$ be a unit square. Point $E$ is on $BC$, point $F$ is on $DC$, $\vartriangle AEF$ is equilateral, and $GHIJ$ is a square in $\vartriangle AEF$ such that $GH$ is on $EF$. Compute the area of square $GHIJ$.
1966 Kurschak Competition, 1
Can we arrange $5$ points in space to form a pentagon with equal sides such that the angle between each pair of adjacent edges is $90^o$?
2014 Indonesia MO Shortlist, G5
Given a cyclic quadrilateral $ABCD$. Suppose $E, F, G, H$ are respectively the midpoint of the sides $AB, BC, CD, DA$. The line passing through $G$ and perpendicular on $AB$ intersects the line passing through $H$ and perpendicular on $BC$ at point $K$. Prove that $\angle EKF = \angle ABC$.
2013 JBMO TST - Turkey, 7
In a convex quadrilateral $ABCD$ diagonals intersect at $E$ and $BE = \sqrt{2}\cdot ED, \: \angle BEC = 45^{\circ}.$ Let $F$ be the foot of the perpendicular from $A$ to $BC$ and $P$ be the second intersection point of the circumcircle of triangle $BFD$ and line segment $DC$. Find $\angle APD$.
2018 Iranian Geometry Olympiad, 2
In convex quadrilateral $ABCD$, the diagonals $AC$ and $BD$ meet at the point $P$. We know that $\angle DAC = 90^o$ and $2 \angle ADB = \angle ACB$. If we have $ \angle DBC + 2 \angle ADC = 180^o$ prove that $2AP = BP$.
Proposed by Iman Maghsoudi