This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2005 France Pre-TST, 5

Let $I$ be the incenter of the triangle $ABC$. Let $A_1,A_2$ be two distinct points on the line $BC$, let $B_1,B_2$ be two distinct points on the line $CA$, and let $C_1,C_2$ be two distinct points on the line $BA$ such that $AI = A_1I = A_2I$ and $BI = B_1I = B_2I$ and $CI = C_1I = C_2I$. Prove that $A_1A_2+B_1B_2+C_1C_2 = p$ where $p$ denotes the perimeter of $ABC.$ Pierre.

1951 Polish MO Finals, 1

A beam of length $ a $ is suspended horizontally with its ends on two parallel ropes equal $ b $. We turn the beam through an angle $ \varphi $ around a vertical axis passing through the center of the beam. By how much will the beam rise?

2010 ELMO Shortlist, 1

Let $ABC$ be a triangle. Let $A_1$, $A_2$ be points on $AB$ and $AC$ respectively such that $A_1A_2 \parallel BC$ and the circumcircle of $\triangle AA_1A_2$ is tangent to $BC$ at $A_3$. Define $B_3$, $C_3$ similarly. Prove that $AA_3$, $BB_3$, and $CC_3$ are concurrent. [i]Carl Lian.[/i]

2001 Romania Team Selection Test, 3

The tangents at $A$ and $B$ to the circumcircle of the acute triangle $ABC$ intersect the tangent at $C$ at the points $D$ and $E$, respectively. The line $AE$ intersects $BC$ at $P$ and the line $BD$ intersects $AC$ at $R$. Let $Q$ and $S$ be the midpoints of the segments $AP$ and $BR$ respectively. Prove that $\angle ABQ=\angle BAS$.

2012 USA TSTST, 7

Triangle $ABC$ is inscribed in circle $\Omega$. The interior angle bisector of angle $A$ intersects side $BC$ and $\Omega$ at $D$ and $L$ (other than $A$), respectively. Let $M$ be the midpoint of side $BC$. The circumcircle of triangle $ADM$ intersects sides $AB$ and $AC$ again at $Q$ and $P$ (other than $A$), respectively. Let $N$ be the midpoint of segment $PQ$, and let $H$ be the foot of the perpendicular from $L$ to line $ND$. Prove that line $ML$ is tangent to the circumcircle of triangle $HMN$.

2021 BMT, 10

Tags: geometry
Triangle $\vartriangle ABC$ has side lengths $AB = AC = 27$ and $BC = 18$. Point $D$ is on $\overline{AB}$ and point $E$ is on $\overline{AC}$ such that $\angle BCD = \angle CBE = \angle BAC$. Compute $DE$.

2004 VJIMC, Problem 3

Denote by $B(c,r)$ the open disk of center $c$ and radius $r$ in the plane. Decide whether there exists a sequence $\{z_n\}^\infty_{n=1}$ of points in $\mathbb R^2$ such that the open disks $B(z_n,1/n)$ are pairwise disjoint and the sequence $\{z_n\}^\infty_{n=1}$ is convergent.

2002 AMC 12/AHSME, 7

Tags: ratio , geometry
If an arc of $ 45^\circ$ on circle $ A$ has the same length as an arc of $ 30^\circ$ on circle $ B$, then the ratio of the area of circle $ A$ to the area of circle $ B$ is $ \textbf{(A)}\ \frac {4}{9} \qquad \textbf{(B)}\ \frac {2}{3} \qquad \textbf{(C)}\ \frac {5}{6} \qquad \textbf{(D)}\ \frac {3}{2} \qquad \textbf{(E)}\ \frac {9}{4}$

2017 Harvard-MIT Mathematics Tournament, 6

In convex quadrilateral $ABCD$ we have $AB=15$, $BC=16$, $CD=12$, $DA=25$, and $BD=20$. Let $M$ and $\gamma$ denote the circumcenter and circumcircle of $\triangle ABD$. Line $CB$ meets $\gamma$ again at $F$, line $AF$ meets $MC$ at $G$, and line $GD$ meets $\gamma$ again at $E$. Determine the area of pentagon $ABCDE$.

2023 VN Math Olympiad For High School Students, Problem 2

Tags: geometry
Prove that: $3$ symmedians of a triangle are concurrent at a point; the concurrent point is called the [i]Lemoine[/i] point of the given triangle.

2015 AMC 10, 19

The isosceles right triangle $ABC$ has right angle at $C$ and area $12.5$. The rays trisecting $\angle{ACB}$ intersect $AB$ at $D$ and $E$. What is the area of $\triangle{CDE}$? $\textbf{(A) }\frac{5\sqrt{2}}{3}\qquad\textbf{(B) }\frac{50\sqrt{3}-75}{4}\qquad\textbf{(C) }\frac{15\sqrt{3}}{8}\qquad\textbf{(D) }\frac{50-25\sqrt{3}}{2}\qquad\textbf{(E) }\frac{25}{6}$

2024 Abelkonkurransen Finale, 4a

The triangle $ABC$ with $AB < AC$ has an altitude $AD$. The points $E$ and $A$ lie on opposite sides of $BC$, with $E$ on the circumcircle of $ABC$. Furthermore, $AD = DE$ and $\angle ADO=\angle CDE$, where $O$ is the circumcentre of $ABC$. Determine $\angle BAC$.

2003 Iran MO (3rd Round), 20

Suppose that $ M$ is an arbitrary point on side $ BC$ of triangle $ ABC$. $ B_1,C_1$ are points on $ AB,AC$ such that $ MB = MB_1$ and $ MC = MC_1$. Suppose that $ H,I$ are orthocenter of triangle $ ABC$ and incenter of triangle $ MB_1C_1$. Prove that $ A,B_1,H,I,C_1$ lie on a circle.

2020 EGMO, 5

Tags: geometry , incenter
Consider the triangle $ABC$ with $\angle BCA > 90^{\circ}$. The circumcircle $\Gamma$ of $ABC$ has radius $R$. There is a point $P$ in the interior of the line segment $AB$ such that $PB = PC$ and the length of $PA$ is $R$. The perpendicular bisector of $PB$ intersects $\Gamma$ at the points $D$ and $E$. Prove $P$ is the incentre of triangle $CDE$.

1997 French Mathematical Olympiad, Problem 3

Let $C$ be a unit cube and let $p$ denote the orthogonal projection onto the plane. Find the maximum area of $p(C)$.

1989 China Team Selection Test, 4

Given triangle $ABC$, squares $ABEF, BCGH, CAIJ$ are constructed externally on side $AB, BC, CA$, respectively. Let $AH \cap BJ = P_1$, $BJ \cap CF = Q_1$, $CF \cap AH = R_1$, $AG \cap CE = P_2$, $BI \cap AG = Q_2$, $CE \cap BI = R_2$. Prove that triangle $P_1 Q_1 R_1$ is congruent to triangle $P_2 Q_2 R_2$.

1970 AMC 12/AHSME, 10

Let $F=.48181\cdots$ be an infinite repeating decimal with the digits $8$ and $1$ repeating. When $F$ is written as a fraction in lowest terms, the denominator exceeds the numerator by $\textbf{(A) }13\qquad\textbf{(B) }14\qquad\textbf{(C) }29\qquad\textbf{(D) }57\qquad \textbf{(E) }126$

2017 NIMO Problems, 3

Let $ABCD$ be a cyclic quadrilateral with circumradius $100\sqrt{3}$ and $AC=300$. If $\angle DBC = 15^{\circ}$, then find $AD^2$. [i]Proposed by Anand Iyer[/i]

2019 Polish Junior MO Finals, 2.

Let $ABCD$ be the isosceles trapezium with bases $AB$ and $CD$, such that $AC = BC$. The point $M$ is the midpoint of side $AD$. Prove that $\sphericalangle ACM = \sphericalangle CBD$.

1979 Chisinau City MO, 172

Show that in a right-angled triangle the bisector of the right angle divides into equal parts the angle between the altitude and the median, drawn from the same vertex.

1986 Polish MO Finals, 1

A square of side $1$ is covered with $m^2$ rectangles. Show that there is a rectangle with perimeter at least $\frac{4}{m}$.

2021 Romania National Olympiad, 2

Let $P_0, P_1,\ldots, P_{2021}$ points on the unit circle of centre $O$ such that for each $n\in \{1,2,\ldots, 2021\}$ the length of the arc from $P_{n-1}$ to $P_n$ (in anti-clockwise direction) is in the interval $\left[\frac{\pi}2,\pi\right]$. Determine the maximum possible length of the vector: \[\overrightarrow{OP_0}+\overrightarrow{OP_1}+\ldots+\overrightarrow{OP_{2021}}.\] [i]Mihai Iancu[/i]

2012 Kazakhstan National Olympiad, 2

Let $ABCD$ be an inscribed quadrilateral, in which $\angle BAD<90$. On the rays $AB$ and $AD$ are selected points $K$ and $L$, respectively, such that$ KA = KD, LA = LB$. Let $N$ - the midpoint of $AC$.Prove that if $\angle BNC=\angle DNC $,so $\angle KNL=\angle BCD $

2024 Junior Balkan Team Selection Tests - Romania, P4

Tags: geometry
Let $ABC$ be a triangle. An arbitrary circle which passes through the points $B,C$ intersects the sides $AC,AB$ for the second time in $D,E$ respectively. The line $BD$ intersects the circumcircle of the triangle $AEC$ at $P{}$ and $Q{}$ and the line $CE$ intersects the circumcircle of the triangle $ABD$ at $R{}$ and $S{}$ such that $P{}$ is situated on the segment $BD{}$ and $R{}$ lies on the segment $CE.$ Prove that: [list=a] [*]The points $P,Q,R$ and $S{}$ are concyclic. [*]The triangle $APQ$ is isosceles. [/list] [i]Petru Braica[/i]

2023 Stars of Mathematics, 1

A convex polygon is dissected into a finite number of triangles with disjoint interiors, whose sides have odd integer lengths. The triangles may have multiple vertices on the boundary of the polygon and their sides may overlap partially. [list=a] [*]Prove that the polygon's perimeter is an integer which has the same parity as the number of triangles in the dissection. [*]Determine whether part a) holds if the polygon is not convex. [/list] [i]Proposed by Marius Cavachi[/i] [i]Note: the junior version only included part a), with an arbitrary triangle instead of a polygon.[/i]