This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2012 Sharygin Geometry Olympiad, 1

Determine all integer $n$ such that a surface of an $n \times n \times n$ grid cube can be pasted in one layer by paper $1 \times 2$ rectangles so that each rectangle has exactly five neighbors (by a line segment). (A.Shapovalov)

1968 Putnam, A4

Let $S^{2}\subset \mathbb{R}^{3}$ be the unit sphere. Show that for any $n$ points on $ S^{2}$, the sum of the squares of the $\frac{n(n-1)}{2}$ distances between them is at most $n^{2}$.

Kyiv City MO Juniors 2003+ geometry, 2003.8.5

Three segments $2$ cm, $5$ cm and $12$ cm long are constructed on the plane. Construct a trapezoid with bases of $2$ cm and $5$ cm, the sum of the sides of which is $12$ cm, and one of the angles is $60^o$. (Bogdan Rublev)

2018 Serbia Team Selection Test, 3

Ana and Bob are playing the following game. [list] [*] First, Bob draws triangle $ABC$ and a point $P$ inside it. [*] Then Ana and Bob alternate, starting with Ana, choosing three different permutations $\sigma_1$, $\sigma_2$ and $\sigma_3$ of $\{A, B, C\}$. [*] Finally, Ana draw a triangle $V_1V_2V_3$. [/list] For $i=1,2,3$, let $\psi_i$ be the similarity transformation which takes $\sigma_i(A), \sigma_i(B)$ and $\sigma_i(C)$ to $V_i, V_{i+1}$ and $ X_i$ respectively (here $V_4=V_1$) where triangle $\Delta V_iV_{i+1}X_i$ lies on the outside of triangle $V_1V_2V_3$. Finally, let $Q_i=\psi_i(P)$. Ana wins if triangles $Q_1Q_2Q_3$ and $ABC$ are similar (in some order of vertices) and Bob wins otherwise. Determine who has the winning strategy.

2014 Iran Geometry Olympiad (senior), 3:

Tags: geometry
Let $ABC$ be an acute triangle.A circle with diameter $BC$ meets $AB$ and $AC$ at $E$ and $F$,respectively. $M$ is midpoint of $BC$ and $P$ is point of intersection $AM$ with $EF$. $X$ is an arbitary point on arc $EF$ and $Y$ is the second intersection of $XP$ with a circle with diameter $BC$.Prove that $ \measuredangle XAY=\measuredangle XYM $. Author:Ali zo'alam , Iran

2019 Harvard-MIT Mathematics Tournament, 7

A convex polygon on the plane is called [i]wide[/i] if the projection of the polygon onto any line in the same plane is a segment with length at least 1. Prove that a circle of radius $\tfrac{1}{3}$ can be placed completely inside any wide polygon.

2021 Brazil EGMO TST, 3

Let $ABC$ be an acute-angled triangle with $AC>AB$, and $\Omega$ is your circumcircle. Let $P$ be the midpoint of the arc $BC$ of $\Omega$ (not containing $A$) and $Q$ be the midpoint of the arc $BC$ of $\Omega$(containing the point $A$). Let $M$ be the foot of perpendicular of $Q$ on the line $AC$. Prove that the circumcircle of $\triangle AMB$ cut the segment $AP$ in your midpoint.

2019 Yasinsky Geometry Olympiad, p4

In the triangle $ABC$, the side $BC$ is equal to $a$. Point $F$ is midpoint of $AB$, $I$ is the point of intersection of the bisectors of triangle $ABC$. It turned out that $\angle AIF = \angle ACB$. Find the perimeter of the triangle $ABC$. (Grigory Filippovsky)

2018 CMIMC Geometry, 5

Tags: geometry
Select points $T_1,T_2$ and $T_3$ in $\mathbb{R}^3$ such that $T_1=(0,1,0)$, $T_2$ is at the origin, and $T_3=(1,0,0)$. Let $T_0$ be a point on the line $x=y=0$ with $T_0\neq T_2$. Suppose there exists a point $X$ in the plane of $\triangle T_1T_2T_3$ such that the quantity $(XT_i)[T_{i+1}T_{i+2}T_{i+3}]$ is constant for all $i=0$ to $i=3$, where $[\mathcal{P}]$ denotes area of the polygon $\mathcal{P}$ and indices are taken modulo 4. What is the magnitude of the $z$-coordinate of $T_0$?

2017 India IMO Training Camp, 3

Let $ABCD$ be a cyclic quadrilateral inscribed in circle $\Omega$ with $AC \perp BD$. Let $P=AC \cap BD$ and $W,X,Y,Z$ be the projections of $P$ on the lines $AB, BC, CD, DA$ respectively. Let $E,F,G,H$ be the mid-points of sides $AB, BC, CD, DA$ respectively. (a) Prove that $E,F,G,H,W,X,Y,Z$ are concyclic. (b) If $R$ is the radius of $\Omega$ and $d$ is the distance between its centre and $P$, then find the radius of the circle in (a) in terms of $R$ and $d$.

2011 Romania National Olympiad, 3

Let $VABC$ be a regular triangular pyramid with base $ABC$, of center $O$. Points $I$ and $H$ are the center of the inscribed circle, respectively the orthocenter $\vartriangle VBC$. Knowing that $AH = 3 OI$, determine the measure of the angle between the lateral edge of the pyramid and the plane of the base.

2023 India Regional Mathematical Olympiad, 1

Tags: geometry
Given a triangle $ABC$ with $\angle ACB = 120^{\circ}.$ A point $L$ is marked in the side $AB$ such that $CL$ bisects $\angle ACB.$ Points $N$ and $K$ are chosen in the sides $AC$ and $BC $ such that $CK+CN=CL.$ Prove that the triangle $KLN$ is equilateral.

1993 India National Olympiad, 6

Tags: geometry
Let $ABC$ be a triangle right-angled at $A$ and $S$ be its circumcircle. Let $S_1$ be the circle touching the lines $AB$ and $AC$, and the circle $S$ internally. Further, let $S_2$ be the circle touching the lines $AB$ and $AC$ and the circle $S$ externally. If $r_1, r_2$ be the radii of $S_1, S_2$ prove that $r_1 \cdot r_2 = 4 A[ABC]$.

1982 National High School Mathematics League, 12

Given a circle $C:x^2+y^2=r^2$ ($r$ is an odd number). $P(u,v)\in C$, satisfying: $u=p^m, v=q^n$($p,q$ are prime numbers, $m,n$ are integers, $u>v$). Define $A,B,C,D,M,N:A(r,0),B(-r,0),C(0,-r),D(0,r),M(u,0),N(0,v)$. Prove that $|AM|=1,|BM|=9,|CN|=8,|DN|=2$.

2003 National Olympiad First Round, 17

Tags: geometry
The circle $C_1$ and the circle $C_2$ passing through the center of $C_1$ intersect each other at $A$ and $B$. The line tangent to $C_2$ at $B$ meets $C_1$ at $B$ and $D$. If the radius of $C_1$ is $\sqrt 3$ and the radius of $C_2$ is $2$, find $\dfrac{|AB|}{|BD|}$. $ \textbf{(A)}\ \dfrac 12 \qquad\textbf{(B)}\ \dfrac {\sqrt 3}2 \qquad\textbf{(C)}\ \dfrac {2\sqrt 3}2 \qquad\textbf{(D)}\ 1 \qquad\textbf{(E)}\ \dfrac {\sqrt 5}2 $

2010 Contests, 2

Let $ I$ be the incentre and $ O$ the circumcentre of a given acute triangle $ ABC$. The incircle is tangent to $ BC$ at $ D$. Assume that $ \angle B < \angle C$ and the segments $ AO$ and $ HD$ are parallel, where $H$ is the orthocentre of triangle $ABC$. Let the intersection of the line $ OD$ and $ AH$ be $ E$. If the midpoint of $ CI$ is $ F$, prove that $ E,F,I,O$ are concyclic.

2006 Paraguay Mathematical Olympiad, 3

Tags: geometry
Let $\Gamma_A$, $\Gamma_B$, $\Gamma_C$ be circles such that $\Gamma_A$ is tangent to $\Gamma_B$ and $\Gamma_B$ is tangent to $\Gamma_C$. All three circles are tangent to lines $L$ and $M$, with $A$, $B$, $C$ being the tangency points of $M$ with $\Gamma_A$, $\Gamma_B$, $\Gamma_C$, respectively. Given that $12=r_A<r_B<r_C=75$, calculate: a) the length of $r_B$. b) the distance between point $A$ and the point of intersection of lines $L$ and $M$.

1989 IMO Longlists, 3

Ali Barber, the carpet merchant, has a rectangular piece of carpet whose dimensions are unknown. Unfortunately, his tape measure is broken and he has no other measuring instruments. However, he finds that if he lays it flat on the floor of either of his storerooms, then each corner of the carpet touches a different wall of that room. If the two rooms have dimensions of 38 feet by 55 feet and 50 feet by 55 feet, what are the carpet dimensions?

2025 PErA, P4

Tags: geometry
Let \( ABC \) be an acute-angled scalene triangle. Let \( B_1 \) and \( B_2 \) be points on the rays \( BC \) and \( BA \), respectively, such that \( BB_1 = BB_2 = AC \). Similarly, let \( C_1 \) and \( C_2 \) be points on the rays \( CB \) and \( CA \), respectively, such that \( CC_1 = CC_2 = AB \). Prove that if \( B_1B_2 \) and \( C_1C_2 \) intersect at \( K \), then \( AK \) is parallel to \( BC \).

1985 IMO Shortlist, 9

Determine the radius of a sphere $S$ that passes through the centroids of each face of a given tetrahedron $T$ inscribed in a unit sphere with center $O$. Also, determine the distance from $O$ to the center of $S$ as a function of the edges of $T.$

2011 Sharygin Geometry Olympiad, 2

Tags: geometry
Let $ABC$ be a triangle with sides $AB = 4$ and $AC = 6$. Point $H$ is the projection of vertex $B$ to the bisector of angle $A$. Find $MH$, where $M$ is the midpoint of $BC$.

2008 ITest, 54

Tags: geometry
One of Michael's responsibilities in organizing the family vacation is to call around and find room rates for hotels along the root the Kubik family plans to drive. While calling hotels near the Grand Canyon, a phone number catches Michael's eye. Michael notices that the first four digits of $987-1234$ descend $(9-8-7-1)$ and that the last four ascend in order $(1-2-3-4)$. This fact along with the fact that the digits are split into consecutive groups makes that number easier to remember. Looking back at the list of numbers that Michael called already, he notices that several of the phone numbers have the same property: their first four digits are in descending order while the last four are in ascending order. Suddenly, Michael realizes that he can remember all those numbers without looking back at his list of hotel phone numbers. "Wow," he thinks, "that's good marketing strategy." Michael then wonders to himself how many businesses in a single area code could have such phone numbers. How many $7$-digit telephone numbers are there such that all seven digits are distinct, the first four digits are in descending order, and the last four digits are in ascending order?

2000 Portugal MO, 2

Tags: geometry , circles
In the figure, the chord $[CD]$ is perpendicular to the diameter $[AB]$ and intersects it at $H$. Length of $AB$ is a two-digit natural number. Changing the order of these two digits gives length of $CD$. Knowing that distance from $H$ to the center $O$ is a positive rational number, calculate $AB$. [img]https://cdn.artofproblemsolving.com/attachments/5/f/eb9c61579a38118b4f753bbc19a9a50e0732dc.png[/img]

2014 LMT, Individual

[b]p1.[/b] What is $6\times 7 + 4 \times 7 + 6\times 3 + 4\times 3$? [b]p2.[/b] How many integers $n$ have exactly $\sqrt{n}$ factors? [b]p3.[/b] A triangle has distinct angles $3x+10$, $2x+20$, and $x+30$. What is the value of $x$? [b]p4.[/b] If $4$ people of the Math Club are randomly chosen to be captains, and Henry is one of the $30$ people eligible to be chosen, what is the probability that he is not chosen to be captain? [b]p5.[/b] $a, b, c, d$ is an arithmetic sequence with difference $x$ such that $a, c, d$ is a geometric sequence. If $b$ is $12$, what is $x$? (Note: the difference of an aritmetic sequence can be positive or negative, but not $0$) [b]p6.[/b] What is the smallest positive integer that contains only $0$s and $5$s that is a multiple of $24$. [b]p7.[/b] If $ABC$ is a triangle with side lengths $13$, $14$, and $15$, what is the area of the triangle made by connecting the points at the midpoints of its sides? [b]p8.[/b] How many ways are there to order the numbers $1,2,3,4,5,6,7,8$ such that $1$ and $8$ are not adjacent? [b]p9.[/b] Find all ordered triples of nonnegative integers $(x, y, z)$ such that $x + y + z = xyz$. [b]p10.[/b] Noah inscribes equilateral triangle $ABC$ with area $\sqrt3$ in a cricle. If $BR$ is a diameter of the circle, then what is the arc length of Noah's $ARC$? [b]p11.[/b] Today, $4/12/14$, is a palindromic date, because the number without slashes $41214$ is a palindrome. What is the last palindromic date before the year $3000$? [b]p12.[/b] Every other vertex of a regular hexagon is connected to form an equilateral triangle. What is the ratio of the area of the triangle to that of the hexagon? [b]p13.[/b] How many ways are there to pick four cards from a deck, none of which are the same suit or number as another, if order is not important? [b]p14.[/b] Find all functions $f$ from $R \to R$ such that $f(x + y) + f(x - y) = x^2 + y^2$. [b]p15.[/b] What are the last four digits of $1(1!) + 2(2!) + 3(3!) + ... + 2013(2013!)$/ [b]p16.[/b] In how many distinct ways can a regular octagon be divided up into $6$ non-overlapping triangles? [b]p17.[/b] Find the sum of the solutions to the equation $\frac{1}{x-3} + \frac{1}{x-5} + \frac{1}{x-7} + \frac{1}{x-9} = 2014$ . [b]p18.[/b] How many integers $n$ have the property that $(n+1)(n+2)(n+3)(n+4)$ is a perfect square of an integer? [b]p19.[/b] A quadrilateral is inscribed in a unit circle, and another one is circumscribed. What is the minimum possible area in between the two quadrilaterals? [b]p20.[/b] In blindfolded solitary tic-tac-toe, a player starts with a blank $3$-by-$3$ tic-tac-toe board. On each turn, he randomly places an "$X$" in one of the open spaces on the board. The game ends when the player gets $3$ $X$s in a row, in a column, or in a diagonal as per normal tic-tac-toe rules. (Note that only $X$s are used, not $O$s). What fraction of games will run the maximum $7$ amount of moves? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1967 AMC 12/AHSME, 40

Located inside equilateral triangle $ABC$ is a point $P$ such that $PA=8$, $PB=6$, and $PC=10$. To the nearest integer the area of triangle $ABC$ is: $\textbf{(A)}\ 159\qquad \textbf{(B)}\ 131\qquad \textbf{(C)}\ 95\qquad \textbf{(D)}\ 79\qquad \textbf{(E)}\ 50$