Found problems: 25757
2024 Taiwan TST Round 3, G
Let $ABC$ be a triangle such that the angular bisector of $\angle BAC$, the $B$-median and the perpendicular bisector of $AB$ intersect at a single point $X$. Let $H$ be the orthocenter of $ABC$. Show that $\angle BXH = 90^{\circ}$.
[i]Proposed by usjl[/i]
2018 PUMaC Geometry B, 5
Consider rectangle $ABCD$ with $AB=30$ and $BC=60$. Construct circle $T$ whose diameter is $AD$. Construct circle $S$ whose diameter is $AB$. Let circles $S$ and $T$ intersect at $P$ such that $P\neq A$. Let $AP$ intersect $BC$ at $E$. Let $F$ be the point on $AB$ such that $EF$ is tangent to the circle with diameter $AD$. Find the area of triangle $AEF$.
2023 ELMO Shortlist, G1
Let \(ABCDE\) be a regular pentagon. Let \(P\) be a variable point on the interior of segment \(AB\) such that \(PA\ne PB\). The circumcircles of \(\triangle PAE\) and \(\triangle PBC\) meet again at \(Q\). Let \(R\) be the circumcenter of \(\triangle DPQ\). Show that as \(P\) varies, \(R\) lies on a fixed line.
[i]Proposed by Karthik Vedula[/i]
2019 Estonia Team Selection Test, 11
Given a circle $\omega$ with radius $1$. Let $T$ be a set of triangles good, if the following conditions apply:
(a) the circumcircle of each triangle in the set $T$ is $\omega$;
(b) The interior of any two triangles in the set $T$ has no common point.
Find all positive real numbers $t$, for which for each positive integer $n$ there is a good set of $n$ triangles, where the perimeter of each triangle is greater than $t$.
2016 Oral Moscow Geometry Olympiad, 5
From point $A$ to circle $\omega$ tangent $AD$ and arbitrary a secant intersecting a circle at points $B$ and $C$ (B lies between points $A$ and $C$). Prove that the circle passing through points $C$ and $D$ and touching the straight line $BD$, passes through a fixed point (other than $D$).
2000 Mongolian Mathematical Olympiad, Problem 3
Two points $A$ and $B$ move around two different circles in the plane with the same angular velocity. Suppose that there is a point $C$ which is equidistant from $A$ and $B$ at every moment. Prove that, at some moment, $A$ and $B$ will coincide.
2014 China Team Selection Test, 4
Given circle $O$ with radius $R$, the inscribed triangle $ABC$ is an acute scalene triangle, where $AB$ is the largest side. $AH_A, BH_B,CH_C$ are heights on $BC,CA,AB$. Let $D$ be the symmetric point of $H_A$ with respect to $H_BH_C$, $E$ be the symmetric point of $H_B$ with respect to $H_AH_C$. $P$ is the intersection of $AD,BE$, $H$ is the orthocentre of $\triangle ABC$. Prove: $OP\cdot OH$ is fixed, and find this value in terms of $R$.
(Edited)
2003 German National Olympiad, 4
From the midpoints of the sides of an acute-angled triangle, perpendiculars are drawn to the adjacent sides. The resulting six straight lines bound the hexagon. Prove that its area is half the area of the original triangle.
2020 Argentina National Olympiad, 3
Let $ABC$ be a right isosceles triangle with right angle at $A$. Let $E$ and $F$ be points on A$B$ and $AC$ respectively such that $\angle ECB = 30^o$ and $\angle FBC = 15^o$. Lines $CE$ and $BF$ intersect at $P$ and line $AP$ intersects side $BC$ at $D$. Calculate the measure of angle $\angle FDC$.
2013 Online Math Open Problems, 19
$A,B,C$ are points in the plane such that $\angle ABC=90^\circ$. Circles with diameters $BA$ and $BC$ meet at $D$. If $BA=20$ and $BC=21$, then the length of segment $BD$ can be expressed in the form $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. What is $m+n$?
[i]Ray Li[/i]
1956 AMC 12/AHSME, 38
In a right triangle with sides $ a$ and $ b$, and hypotenuse $ c$, the altitude drawn on the hypotenuse is $ x$. Then:
$ \textbf{(A)}\ ab \equal{} x^2 \qquad\textbf{(B)}\ \frac {1}{a} \plus{} \frac {1}{b} \equal{} \frac {1}{x} \qquad\textbf{(C)}\ a^2 \plus{} b^2 \equal{} 2x^2$
$ \textbf{(D)}\ \frac {1}{x^2} \equal{} \frac {1}{a^2} \plus{} \frac {1}{b^2} \qquad\textbf{(E)}\ \frac {1}{x} \equal{} \frac {b}{a}$
2007 Junior Balkan Team Selection Tests - Romania, 3
Let $ABC$ be a right triangle with $A = 90^{\circ}$ and $D \in (AC)$. Denote by $E$ the reflection of $A$ in the line $BD$ and $F$ the intersection point of $CE$ with the perpendicular in $D$ to $BC$. Prove that $AF, DE$ and $BC$ are concurrent.
2022 AMC 10, 2
In rhombus $ABCD$, point $P$ lies on segment $\overline{AD}$ such that $BP\perp AD$, $AP = 3$, and $PD = 2$. What is the area of $ABCD$?
[asy]
import olympiad;
size(180);
real r = 3, s = 5, t = sqrt(r*r+s*s);
defaultpen(linewidth(0.6) + fontsize(10));
pair A = (0,0), B = (r,s), C = (r+t,s), D = (t,0), P = (r,0);
draw(A--B--C--D--A^^B--P^^rightanglemark(B,P,D));
label("$A$",A,SW);
label("$B$", B, NW);
label("$C$",C,NE);
label("$D$",D,SE);
label("$P$",P,S);
[/asy]
$\textbf{(A) }3\sqrt 5 \qquad
\textbf{(B) }10 \qquad
\textbf{(C) }6\sqrt 5 \qquad
\textbf{(D) }20\qquad
\textbf{(E) }25$
MBMT Guts Rounds, 2018
[hide=C stands for Cantor, G stands for Gauss]they had two problem sets under those two names[/hide]
[u] Set 4[/u]
[b]C.16 / G.6[/b] Let $a, b$, and $c$ be real numbers. If $a^3 + b^3 + c^3 = 64$ and $a + b = 0$, what is the value of $c$?
[b]C.17 / G.8[/b] Bender always turns $60$ degrees clockwise. He walks $3$ meters, turns, walks $2$ meters, turns, walks $1$ meter, turns, walks $4$ meters, turns, walks $1$ meter, and turns. How many meters does Bender have to walk to get back to his original position?
[b]C.18 / G.13[/b] Guang has $4$ identical packs of gummies, and each pack has a red, a blue, and a green gummy. He eats all the gummies so that he finishes one pack before going on to the next pack, but he never eats two gummies of the same color in a row. How many different ways can Guang eat the gummies?
[b]C.19[/b] Find the sum of all digits $q$ such that there exists a perfect square that ends in $q$.
[b]C.20 / G.14[/b] The numbers $5$ and $7$ are written on a whiteboard. Every minute Stev replaces the two numbers on the board with their sum and difference. After $2017$ minutes the product of the numbers on the board is $m$. Find the number of factors of $m$.
[u]Set 5[/u]
[b]C.21 / G.10[/b] On the planet Alletas, $\frac{32}{33}$ of the people with silver hair have purple eyes and $\frac{8}{11}$ of the people with purple eyes have silver hair. On Alletas, what is the ratio of the number of people with purple eyes to the number of people with silver hair?
[b]C.22 / G.15[/b] Let $P$ be a point on $y = -1$. Let the clockwise rotation of $P$ by $60^o$ about $(0, 0)$ be $P'$. Find the minimum possible distance between $P'$ and $(0, -1)$.
[b]C.23 / G.18[/b] How many triangles can be made from the vertices and center of a regular hexagon? Two congruent triangles with different orientations are considered distinct.
[b]C.24[/b] Jeremy and Kevin are arguing about how cool a sweater is on a scale of $1-5$. Jeremy says “$3$”, and Kevin says “$4$”. Jeremy angrily responds “$3.5$”, to which Kevin replies “$3.75$”. The two keep going at it, responding with the average of the previous two ratings. What rating will they converge to (and settle on as the coolness of the sweater)?
[b]C.25 / G.20[/b] An even positive integer $n$ has an [i]odd factorization[/i] if the largest odd divisor of $n$ is also the smallest odd divisor of $n$ greater than $1$. Compute the number of even integers $n$ less than $50$ with an odd factorization.
[u]Set 6[/u]
[b]C.26 / G.26[/b] When $2018! = 2018 \times 2017 \times ... \times 1$ is multiplied out and written as an integer, find the number of $4$’s.
If the correct answer is $A$ and your answer is $E$, you will receive $12 \min\, \, (A/E, E/A)^3$points.
[b]C.27 / G.27[/b] A circle of radius $10$ is cut into three pieces of equal area with two parallel cuts. Find the width of the center piece.
[img]https://cdn.artofproblemsolving.com/attachments/e/2/e0ab4a2d51052ee364dd14336677b053a40352.png[/img]
If the correct answer is $A$ and your answer is $E$, you will receive $\max \, \,(0, 12 - 6|A - E|)$points.
[b]C.28 / G.28[/b] An equilateral triangle of side length $1$ is randomly thrown onto an infinite set of lines, spaced $1$ apart. On average, how many times will the boundary of the triangle intersect one of the lines?
[img]https://cdn.artofproblemsolving.com/attachments/0/1/773c3d3e0dfc1df54945824e822feaa9c07eb7.png[/img]
For example, in the above diagram, the boundary of the triangle intersects the lines in $2$ places.
If the correct answer is $A$ and your answer is $E$, you will receive $\max\, \,(0, 12-120|A-E|/A)$ points.
[b]C.29 / G.29[/b] Call an ordered triple of integers $(a, b, c)$ nice if there exists an integer $x$ such that $ax^2 + bx + c = 0$. How many nice triples are there such that $-100 \le a, b, c \le 100$?
If the correct answer is $A$ and your answer is $E$, you will receive $12 \min\, \,(A/E, E/A)$ points.
[b]C.30 / G.30[/b] Let $f(i)$ denote the number of MBMT volunteers to be born in the $i$th state to join the United States. Find the value of $1f(1) + 2f(2) + 3f(3) + ... + 50f(50)$.
Note 1: Maryland was the $7$th state to join the US.
Note 2: Last year’s MBMT competition had $42$ volunteers.
If the correct answer is $A$ and your answer is $E$, you will receive $\max\, \,(0, 12 - 500(|A -E|/A)^2)$ points.
PS. You should use hide for answers. C1-15/ G1-10 have been posted [url=https://artofproblemsolving.com/community/c3h2790674p24540132]here [/url] and G16-25 [url=https://artofproblemsolving.com/community/c3h2790679p24540159]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2019 Saint Petersburg Mathematical Olympiad, 4
Given a convex quadrilateral $ABCD$. The medians of the triangle $ABC$ intersect at point $M$, and the medians of the triangle $ACD$ at point$ N$. The circle, circumscibed around the triangle $ACM$, intersects the segment $BD$ at the point $K$ lying inside the triangle $AMB$ . It is known that $\angle MAN = \angle ANC = 90^o$. Prove that $\angle AKD = \angle MKC$.
2010 Greece Junior Math Olympiad, 2
Let $ABCD$ be a rectangle with sides $AB=a$ and $BC=b$. Let $O$ be the intersection point of it's diagonals. Extent side $BA$ towards $A$ at a segment $AE=AO$, and diagonal $DB$ towards $B$ at a segment $BZ=BO$. If the triangle $EZC$ is an equilateral, then prove that:
i) $b=a\sqrt3$
ii) $AZ=EO$
iii) $EO \perp ZD$
2024 CCA Math Bonanza, I10
Let $ABC$ be a triangle with side lengths $AB = 7$, $BC = 8$, and $CA = 9$. Let $O$ be the circumcenter of $\triangle ABC$, and let $AO$, $BO$, $CO$ intersect the circumcircle of $\triangle ABC$ again at $D$, $E$, and $F$, respectively. The area of convex hexagon $AFBDCE$ can be expressed as $m\sqrt{n}$, where $m$ and $n$ are positive integers and $n$ is square-free. Find $m + n$.
[i]Individual #10[/i]
2015 JBMO TST - Turkey, 2
Let $ABCD$ be a convex quadrilateral and let $\omega$ be a circle tangent to the lines $AB$ and $BC$ at points $A$ and $C$, respectively. $\omega$ intersects the line segments $AD$ and $CD$ again at $E$ and $F$, respectively, which are both different from $D$. Let $G$ be the point of intersection of the lines $AF$ and $CE$. Given $\angle ACB=\angle GDC+\angle ACE$, prove that the line $AD$ is tangent to th circumcircle of the triangle $AGB$.
2022-23 IOQM India, 12
Given $\triangle{ABC}$ with $\angle{B}=60^{\circ}$ and $\angle{C}=30^{\circ}$, let $P,Q,R$ be points on the sides $BA,AC,CB$ respectively such that $BPQR$ is an isosceles trapezium with $PQ \parallel BR$ and $BP=QR$.\\
Find the maximum possible value of $\frac{2[ABC]}{[BPQR]}$ where $[S]$ denotes the area of any polygon $S$.
1966 IMO, 2
Let $a,b,c$ be the lengths of the sides of a triangle, and $\alpha, \beta, \gamma$ respectively, the angles opposite these sides. Prove that if \[ a+b=\tan{\frac{\gamma}{2}}(a\tan{\alpha}+b\tan{\beta}) \] the triangle is isosceles.
2016 Iran Team Selection Test, 4
Let $ABC$ be a triangle with $CA \neq CB$. Let $D$, $F$, and $G$ be the midpoints of the sides $AB$, $AC$, and $BC$ respectively. A circle $\Gamma$ passing through $C$ and tangent to $AB$ at $D$ meets the segments $AF$ and $BG$ at $H$ and $I$, respectively. The points $H'$ and $I'$ are symmetric to $H$ and $I$ about $F$ and $G$, respectively. The line $H'I'$ meets $CD$ and $FG$ at $Q$ and $M$, respectively. The line $CM$ meets $\Gamma$ again at $P$. Prove that $CQ = QP$.
[i]Proposed by El Salvador[/i]
2021 Junior Balkan Team Selection Tests - Romania, P3
Let $ABCD$ be a convex quadrilateral with angles $\sphericalangle A, \sphericalangle C\geq90^{\circ}$. On sides $AB,BC,CD$ and $DA$, consider the points $K,L,M$ and $N$ respectively. Prove that the perimeter of $KLMN$ is greater than or equal to $2\cdot AC$.
1983 Federal Competition For Advanced Students, P2, 6
Planes $ \pi _1$ and $ \pi _2$ in Euclidean space $ \mathbb{R} ^3$ partition $ S\equal{}\mathbb{R} ^3 \setminus (\pi _1 \cup \pi _2)$ into several components. Show that for any cube in $ \mathbb{R} ^3$, at least one of the components of $ S$ meets at least three faces of the cube.
2021 Taiwan TST Round 2, 3
Let $ABC$ be a scalene triangle, and points $O$ and $H$ be its circumcenter and orthocenter, respectively. Point $P$ lies inside triangle $AHO$ and satisfies $\angle AHP = \angle POA$. Let $M$ be the midpoint of segment $\overline{OP}$. Suppose that $BM$ and $CM$ intersect with the circumcircle of triangle $ABC$ again at $X$ and $Y$, respectively.
Prove that line $XY$ passes through the circumcenter of triangle $APO$.
[i]Proposed by Li4[/i]
2019 India PRMO, 25
Let $ABC$ be an isosceles triangle with $AB=BC$. A trisector of $\angle B$ meets $AC$ at $D$. If $AB,AC$ and $BD$ are integers and $AB-BD$ $=$ $3$, find $AC$.